Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Cardiorespiratory signature of neonatal sepsis: development and validation of prediction models in 3 NICUs

Abstract

Background

Heart rate characteristics aid early detection of late-onset sepsis (LOS), but respiratory data contain additional signatures of illness due to infection. Predictive models using cardiorespiratory data may improve early sepsis detection. We hypothesized that heart rate (HR) and oxygenation (SpO2) data contain signatures that improve sepsis risk prediction over HR or demographics alone.

Methods

We analyzed cardiorespiratory data from very low birth weight (VLBW, <1500 g) infants admitted to three NICUs. We developed and externally validated four machine learning models to predict LOS using features calculated every 10 m: mean, standard deviation, skewness, kurtosis of HR and SpO2, and cross-correlation. We compared feature importance, discrimination, calibration, and dynamic prediction across models and cohorts. We built models of demographics and HR or SpO2 features alone for comparison with HR-SpO2 models.

Results

Performance, feature importance, and calibration were similar among modeling methods. All models had favorable external validation performance. The HR-SpO2 model performed better than models using either HR or SpO2 alone. Demographics improved the discrimination of all physiologic data models but dampened dynamic performance.

Conclusions

Cardiorespiratory signatures detect LOS in VLBW infants at 3 NICUs. Demographics risk-stratify, but predictive modeling with both HR and SpO2 features provides the best dynamic risk prediction.

Impact

  • Heart rate characteristics aid early detection of late-onset sepsis, but respiratory data contain signatures of illness due to infection.

  • Predictive models using both heart rate and respiratory data may improve early sepsis detection.

  • A cardiorespiratory early warning score, analyzing heart rate from electrocardiogram or pulse oximetry with SpO2, predicts late-onset sepsis within 24 h across multiple NICUs and detects sepsis better than heart rate characteristics or demographics alone.

  • Demographics risk-stratify, but predictive modeling with both HR and SpO2 features provides the best dynamic risk prediction.

  • The results increase understanding of physiologic signatures of neonatal sepsis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic overview of methods.
Fig. 2: Calibration plots.
Fig. 3: The average risk of sepsis.
Fig. 4: Variable importance plots.
Fig. 5: Evaluating the model sensitivity across a range of thresholds.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Moorman, J. R. et al. Mortality reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized trial. J. Pediatr. 159, 900–906 (2011). e1.

    Article  PubMed  PubMed Central  Google Scholar 

  2. King, W. E., Carlo, W. A., O’Shea, T. M. & Schelonka, R. L., HRC neurodevelopmental follow-up investigators. Heart rate characteristics monitoring and reduction in mortality or neurodevelopmental impairment in extremely low birthweight infants with sepsis. Early Hum. Dev. 159, 105419 (2021).

    Article  PubMed  Google Scholar 

  3. Greenberg, R. G. et al. Prolonged duration of early antibiotic therapy in extremely premature infants. Pediatr. Res 85, 994–1000 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lu, J. & Claud, E. C. Connection between gut microbiome and brain development in preterm infants. Dev. Psychobiol. 61, 739–751 (2019).

    Article  PubMed  Google Scholar 

  5. Ting, et al. Duration of initial empirical antibiotic therapy and outcomes in very low birth weight infants. Pediatrics. 143, e20182286 (2019).

  6. Dardas, M. et al. The impact of postnatal antibiotics on the preterm intestinal microbiome. Pediatr. Res 76, 150–158 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan B. A., Kausch S. L., Fairchild K. D. Artificial and human intelligence for early identification of neonatal sepsis. Pediatr Res. 2022. https://doi.org/10.1038/s41390-022-02274-7 Epub ahead of print.

  8. Fairchild, K. D. et al. Vital signs and their cross-correlation in sepsis and NEC: a study of 1,065 very-low-birth-weight infants in two NICUs. Pediatr. Res 81, 315–321 (2017).

    Article  PubMed  Google Scholar 

  9. Griffin, M. P. et al. Abnormal heart rate characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr. Res 53, 920–926 (2003).

    Article  PubMed  Google Scholar 

  10. Sullivan, B. A. et al. Clinical and vital sign changes associated with late-onset sepsis in very low birth weight infants at 3 NICUs. J. Neonatal Perinat. Med 14, 553–561 (2021).

    Article  CAS  Google Scholar 

  11. Sullivan, B. A. et al. Early pulse oximetry data improves prediction of death and adverse outcomes in a two-center cohort of very low birth weight infants. Am. J. Perinatol. 35, 1331–1338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kovatchev, B. P. et al. Sample asymmetry analysis of heart rate characteristics with application to neonatal sepsis and systemic inflammatory response syndrome. Pediatr. Res 54, 892–898 (2003).

    Article  PubMed  Google Scholar 

  13. Lake, D. E., Richman, J. S., Griffin, M. P. & Moorman, J. R. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283, R789–R797 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Griffin, M. P. et al. Heart rate characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics 116, 1070–1074 (2005).

    Article  PubMed  Google Scholar 

  15. Fairchild, K. D. et al. Septicemia mortality reduction in neonates in a heart rate characteristics monitoring trial. Pediatr. Res. 74, 570–575 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fairchild, K. et al. Clinical associations of immature breathing in preterm infants: part 1-central apnea. Pediatr. Res 80, 21–27 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Herlenius, E. An inflammatory pathway to apnea and autonomic dysregulation. Respir. Physiol. Neurobiol. 178, 449–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Joshi, R. et al. Predicting neonatal sepsis using features of heart rate variability, respiratory characteristics, and ECG-derived estimates of infant motion. IEEE J. Biomed. Health Inf. 24, 681–692 (2020).

    Article  Google Scholar 

  19. Cabrera-Quiros, L. et al. Prediction of late-onset sepsis in preterm infants using monitoring signals and machine learning. Crit. Care Explor 3, e0302 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Peng Z., et al. A continuous late-onset sepsis prediction algorithm for preterm infants using multi-channel physiological signals from a patient monitor. IEEE J Biomed Health Inform. 2022. https://doi.org/10.1109/JBHI.2022.3216055 Epub ahead of print.

  21. Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann. Intern Med 162, 55–63 (2015).

    Article  PubMed  Google Scholar 

  22. Moons, K. G. M. et al. Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann. Intern. Med. 162, W1–W73 (2015).

    Article  PubMed  Google Scholar 

  23. Lake, D. E., Fairchild, K. D., Kattwinkel, J. & Moorman, J. R. Reply to: Heart rate predicts sepsis. J. Pediatr. 161, 770–771 (2012).

    Article  Google Scholar 

  24. CRAN - Package rms [Internet]. [cited 2022 Mar 15]. Available from: https://cran.r-project.org/web/packages/rms/index.html

  25. Harrell F. E. rms: Regression Modeling Strategies. 2015;4.3-0.

  26. Harrell F. E. rms: Regression Modeling Strategies. R package version 5.1-0.1. [Internet]. R package version 5.1-0.1. 2018 [cited 2022 Oct 17]. Available from: https://CRAN.R-project.org/package=rms

  27. Harrell, F. E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Cham: Springer International Publishing; 2015.

  28. Srivastava N., Hinton G., Krizhevsky A. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. 2014;15:1929–58.

  29. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD’ ‘ ’16. New York, New York, USA: ACM Press; 2016. p. 785–794.

  31. Breiman L. Random Forests. Springer Science and Business Media LLC. 2001;

  32. van Ravenswaaij-Arts, C. M., Hopman, J. C., Kollée, L. A., Stoelinga, G. B. & van Geijn, H. P. The influence of artificial ventilation on heart rate variability in very preterm infants. Pediatr. Res 37, 124–130 (1995).

    Article  PubMed  Google Scholar 

  33. Di Fiore, J. M., Poets, C. F., Gauda, E., Martin, R. J. & MacFarlane, P. Cardiorespiratory events in preterm infants: etiology and monitoring technologies. J. Perinatol. 36, 165–171 (2016).

    Article  PubMed  Google Scholar 

  34. Jean-Baptiste, N. et al. Coagulase-negative staphylococcal infections in the neonatal intensive care unit. Infect. Control Hosp. Epidemiol. 32, 679–686 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Cantey, J. B., Anderson, K. R., Kalagiri, R. R. & Mallett, L. H. Morbidity and mortality of coagulase-negative staphylococcal sepsis in very-low-birth-weight infants. World J. Pediatr. 14, 269–273 (2018).

    Article  PubMed  Google Scholar 

  36. Downey, L. C., Smith, P. B. & Benjamin, D. K. Risk factors and prevention of late-onset sepsis in premature infants. Early Hum. Dev. 86, 7–12 (2010). Suppl 1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dong, Y. & Speer, C. P. Late-onset neonatal sepsis: recent developments. Arch. Dis. Child Fetal Neonatal Ed. 100, F257–F263 (2015).

    Article  PubMed  Google Scholar 

  38. Sullivan, B. A. & Fairchild, K. D. Predictive monitoring for sepsis and necrotizing enterocolitis to prevent shock. Semin Fetal Neonatal Med 20, 255–261 (2015).

    Article  PubMed  Google Scholar 

  39. Lake, D. E., Fairchild, K. D. & Moorman, J. R. Complex signals bioinformatics: evaluation of heart rate characteristics monitoring as a novel risk marker for neonatal sepsis. J. Clin. Monit. Comput 28, 329–339 (2014).

    Article  PubMed  Google Scholar 

  40. Griffin, M. P. & Moorman, J. R. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics 107, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Lake, D. E., Griffin, M. P. & Moorman, J. R. New mathematical thinking about fetal heart rate characteristics. Pediatr. Res 53, 889–890 (2003).

    Article  PubMed  Google Scholar 

  42. Moorman, J. R. The principles of whole-hospital predictive analytics monitoring for clinical medicine originated in the neonatal ICU. npj Digital Med. 5, 41 (2022).

    Article  Google Scholar 

  43. Fairchild, K. D. & Lake, D. E. Cross-correlation of heart rate and oxygen saturation in very low birthweight infants: association with apnea and adverse events. Am. J. Perinatol. 35, 463–469 (2018).

    Article  PubMed  Google Scholar 

  44. Zimmet A. M. et al. Vital sign metrics of VLBW infants in three NICUs: implications for predictive algorithms. Pediatr Res. 90, 125–130 (2021).

  45. Song, W. et al. A predictive model based on machine learning for the early detection of late-onset neonatal sepsis: development and observational study. JMIR Med. Inf. 8, e15965 (2020).

    Article  Google Scholar 

  46. Masino, A. J. et al. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS One 14, e0212665 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Joshi, R. et al. A ballistographic approach for continuous and non-obtrusive monitoring of movement in neonates. IEEE J. Transl. Eng. Health Med 6, 2700809 (2018).

    Article  PubMed  Google Scholar 

  48. Mani, S. et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J. Am. Med Inf. Assoc. 21, 326–336 (2014).

    Article  Google Scholar 

  49. Griffin, M. P., Lake, D. E. & Moorman, J. R. Heart rate characteristics and laboratory tests in neonatal sepsis. Pediatrics 115, 937–941 (2005).

    Article  PubMed  Google Scholar 

  50. Griffin, M. P., Lake, D. E., O’Shea, T. M. & Moorman, J. R. Heart rate characteristics and clinical signs in neonatal sepsis. Pediatr. Res. 61, 222–227 (2007).

    Article  PubMed  Google Scholar 

  51. Sullivan, B. A. & Fairchild, K. D. Vital signs as physiomarkers of neonatal sepsis. Pediatr. Res. 91, 273–282 (2022).

    Article  PubMed  Google Scholar 

  52. Monfredi O. J. et al. Continuous ECG monitoring should be the heart of bedside AI-based predictive analytics monitoring for early detection of clinical deterioration. J Electrocardiol. 76, 35–38 (2022).

  53. Henry, C. J. et al. Neonatal sepsis: a systematic review of core outcomes from randomised clinical trials. Pediatr. Res. 91, 735–742 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hayes R. et al. Neonatal sepsis definitions from randomised clinical trials. Pediatr Res. 2021. https://doi.org/10.1038/s41390-021-01749-3 Epub ahead of print.

  55. McGovern, M. et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr. Res 88, 14–26 (2020).

    Article  PubMed  Google Scholar 

Download references

Funding

We acknowledge the following grants for funding the work presented in this manuscript: K23 HD097254 [PI: B Sullivan]; R01 HD092071 [Co-PIs KD Fairchild & JR Moorman, Co-I DE Lake] K23NS111086 [PI: Z Vesoulis].

Author information

Authors and Affiliations

Authors

Contributions

S.L.K., B.S., K.F., D.L., R.S., Z.V., and J.R.M. have made substantial contributions to the conception or design of the work; S.L.K., J.Q., J.B., A.P., A.B., and J.I. made substantial contributions to the acquisition, analysis, or interpretation of data; SK and BS drafted the work and all other authors have substantively revised it. All authors have approved the submitted version. All authors have agreed both to be personally accountable for the author’s own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Corresponding author

Correspondence to Sherry L. Kausch.

Ethics declarations

Competing interests

Some authors have financial conflicts of interest. J.R.M. and D.E.L. own stock in Medical Prediction Sciences Corporation. J.R.M. is a consultant for Nihon Kohden Digital Health Solutions. Z.A.V. is a consultant for Medtronic. All other authors have no financial conflicts to disclose. No authors have any non-financial conflicts of interest to disclose.

Consent statement

This study was approved by the IRB at each site with waiver of consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kausch, S.L., Brandberg, J.G., Qiu, J. et al. Cardiorespiratory signature of neonatal sepsis: development and validation of prediction models in 3 NICUs. Pediatr Res 93, 1913–1921 (2023). https://doi.org/10.1038/s41390-022-02444-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02444-7

This article is cited by

Search

Quick links