Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Choline supplementation mitigates effects of bilirubin in cerebellar granule neurons in vitro

Abstract

Background

Premature infants may suffer from high levels of bilirubin that could lead to neurotoxicity. Bilirubin has been shown to decrease L1-mediated ERK1/2 signaling, L1 phosphorylation, and L1 tyrosine 1176 dephosphorylation. Furthermore, bilirubin redistributes L1 into lipid rafts (LR) and decreases L1-mediated neurite outgrowth. We demonstrate that choline supplementation improves L1 function and signaling in the presence of bilirubin.

Methods

Cerebellar granule neurons (CGN) were cultured with and without supplemental choline, and the effects on L1 signaling and function were measured in the presence of bilirubin. L1 activation of ERK1/2, L1 phosphorylation and dephosphorylation were measured. L1 distribution in LR was quantified and neurite outgrowth of CGN was determined.

Results

Forty µM choline significantly reduced the effect of bilirubin on L1 activation of ERK1/2 by 220% (p = 0.04), and increased L1 triggered changes in tyrosine phosphorylation /dephosphorylation of L1 by 34% (p = 0.026) and 35% (p = 0.02) respectively. Choline ameliorated the redistribution of L1 in lipid rafts by 38% (p = 0.02) and increased L1-mediated mean neurite length by 11% (p = 0.04).

Conclusion

Choline pretreatment of CGN significantly reduced the disruption of L1 function by bilirubin. The supplementation of pregnant women and preterm infants with choline may increase infant resilience to the effects of bilirubin.

Impact

  • This article establishes choline as an intervention for the neurotoxic effects of bilirubin on lipid rafts.

  • This article provides clear evidence toward establishing one intervention for bilirubin neurotoxicity, where little is understood.

  • This article paves the way for future investigation into the mechanism of the ameliorative effect of choline on bilirubin neurotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Choline reduces bilirubin inhibition of ERK1/2 activation.
Fig. 2: Choline reduces bilirubin inhibition of L1 tyrosine phosphorylation.
Fig. 3: Choline reduces bilirubin inhibition of L1 dephosphorylation.
Fig. 4: Choline reduces bilirubin-induced L1 redistribution in lipid rafts.
Fig. 5: Choline reduces bilirubin inhibition of neurite outgrowth.
Fig. 6: Neurites visualized with fluorescent microscopy.

Similar content being viewed by others

References

  1. Osterman, M.J.K., Hamilton, B.E., Martin, J.A., Driscoll, A.K., Valenzuela, C.P. National vital statistics reports, Vol. 72, Number 1 January 31, 2023. https://www.cdc.gov/nchs/products/index.htm (2021).

  2. Xoinis, K., Weirather, Y., Mavoori, H., Shaha, S. H. & Iwamoto, L. M. Extremely low birth weight infants are at high risk for auditory neuropathy. J. Perinatol. 27, 718–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Okumura, A. et al. Kernicterus in preterm infants. Pediatrics 123, e1052–e1058 (2009).

    Article  PubMed  Google Scholar 

  4. Arnold, C., Pedroza, C. & Tyson, J. E. Phototherapy in ELBW newborns: does it work? Is it safe? The evidence from randomized clinical trials. Semin. Perinatol. 38, 452–464 (2014).

    Article  PubMed  Google Scholar 

  5. Morris, B. H. et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N. Engl. J. Med. 359, 1885–1896 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sedlak, T. W. & Snyder, S. H. Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113, 1776–1782 (2004).

    Article  PubMed  Google Scholar 

  7. Amin, S. B., Smith, T. & Wang, H. Is neonatal jaundice associated with autism spectrum disorders: a systematic review. J. Autism Dev. Disord. 41, 1455–1463 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahlfors, C. E. Predicting bilirubin neurotoxicity in jaundiced newborns. Curr. Opin. Pediatr. 22, 129–133 (2010).

    Article  PubMed  Google Scholar 

  9. Ostrow, J. D., Pascolo, L. & Tiribelli, C. Reassessment of the unbound concentrations of unconjugated bilirubin in relation to neurotoxicity in vitro. Pediatr. Res. 54, 98–104 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. van der Schoor, L. W. E. et al. Unconjugated free bilirubin in preterm infants. Early Hum. Dev. 106–107, 25–32 (2017).

    Article  PubMed  Google Scholar 

  11. Kitchen S. T., et al. Bilirubin inhibits lipid raft dependent functions of L1 cell adhesion molecule in rat pup cerebellar granule neurons. Pediatr. Res. https://doi.org/10.1038/s41390-020-01156-0 (2020).

  12. Ostrow, J. D., Pascolo, L., Brites, D. & Tiribelli, C. Molecular basis of bilirubin-induced neurotoxicity. Trends Mol. Med. 10, 65–70 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigues, C. M. P., Solá, S., Brito, M. A., Brites, D. & Moura, J. J. G. Bilirubin directly disrupts membrane lipid polarity and fluidity, protein order, and redox status in rat mitochondria. J. Hepatol. 36, 335–341 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Simons, K. & Gerl, M. J. Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell Biol. 11, 688–699 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Patel, H. H., Murray, F. & Insel, P. A. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu. Rev. Pharm. Toxicol. 48, 359–391 (2008).

    Article  CAS  Google Scholar 

  16. Epshtein, Y. et al. Identification of a C-terminus domain critical for the sensitivity of Kir2.1 to cholesterol. Proc. Natl. Acad. Sci. USA 106, 8055–8060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fantini, J. & Barrantes, F. J. Sphingolipid/cholesterol regulation of neurotransmitter receptor conformation and function. Biochim. Biophys. Acta 1788, 2345–2361 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Owen, D. M., Magenau, A., Williamson, D. & Gaus, K. The lipid raft hypothesis revisited–new insights on raft composition and function from super-resolution fluorescence microscopy. Bioessays 34, 739–747 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Korade, Z. & Kenworthy, A. K. Lipid rafts, cholesterol, and the brain. Neuropharmacology 55, 1265–1273 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pike, L. J. The challenge of lipid rafts. J. Lipid Res. 50, S323–S328 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tang, N. et al. Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases. J. Neurochem. 96, 1480–1490 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakai, Y. & Kamiguchi, H. Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner. J. Cell Biol. 159, 1097–1108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Blusztajn, J. K. Choline, a vital amine. Science 281, 794–795 (1998). (1979).

    Article  CAS  PubMed  Google Scholar 

  24. Dietary reference intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline (National Academies Press, 1998) https://doi.org/10.17226/6015.

  25. Zeisel, S. H. Choline, other methyl-donors and epigenetics. Nutrients. 9 https://doi.org/10.3390/nu9050445 (2017).

  26. Signore, C., Ueland, M., Troendle, J., Mills, J. L. Choline concentrations in human maternal and cord blood and intelligence at 5 y of age 1-3. https://academic.oup.com/ajcn/article/87/4/896/4633379 (2008).

  27. Tang, N. et al. Choline partially prevents the impact of ethanol on the lipid raft dependent functions of l1 cell adhesion molecule. Alcohol Clin. Exp. Res. 38, 2722–2730 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis, N. L., Tang, N., He, M., Lee, D. & Bearer, C. F. Choline ameliorates ethanol induced alterations in tyrosine phosphorylation and distribution in detergent-resistant membrane microdomains of L1 cell adhesion molecule in vivo. Birth Defects Res. 112, 480–489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bearer, C. F., Wellmann, K. A. A., Tang, N., He, M. & Mooney, S. M. M. Choline ameliorates deficits in balance caused by acute neonatal ethanol exposure. Cerebellum 14, 413–420 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomas, J. D., Garrison, M. & O’Neill, T. M. Perinatal choline supplementation attenuates behavioral alterations associated with neonatal alcohol exposure in rats. Neurotoxicol. Teratol. 26, 35–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Thomas, J. D. & Tran, T. D. Choline supplementation mitigates trace, but not delay, eyeblink conditioning deficits in rats exposed to alcohol during development. Hippocampus 22, 619–630 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Waddell J., Rickman N. C., He M., Tang N., Bearer C. F. Choline supplementation prevents the effects of bilirubin on cerebellar-mediated behavior in choline-restricted Gunn rat pups. Pediatr. Res. https://doi.org/10.1038/s41390-020-01187-7 (2020).

  33. Bearer, C. F., Swick, A. R. R., O’Riordan, M. A. A. & Cheng, G. Ethanol inhibits L1-mediated neurite outgrowth in postnatal rat cerebellar granule cells. J. Biol. Chem. 274, 13264–13270 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Schmid, R. S., Pruitt, W. M. & Maness, P. F. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J. Neurosci. 20, 4177–4188 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang, N. et al. Ethanol causes the redistribution of L1 cell adhesion molecule in lipid rafts. J. Neurochem. 119, 859–867 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Milstone, A. M. M. et al. Chlorhexidine inhibits L1 cell adhesion molecule-mediated neurite outgrowth in vitro. Pediatr. Res. 75, 8–13 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Gazzin, S., Vitek, L., Watchko, J., Shapiro, S. M. & Tiribelli, C. A novel perspective on the biology of bilirubin in health and disease. Trends Mol. Med. 22, 758–768 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Dudnik, L. B., Tsyupko, A. N., Khrenov, A. V. & Alessenko, A. V. Effect of bilirubin on lipid peroxidation, sphingomyelinase activity, and apoptosis induced by sphingosine and UV irradiation. Biochemistry 66, 1019–1027 (2001).

    CAS  PubMed  Google Scholar 

  39. Vítek, L. & Tiribelli, C. Bilirubin: the yellow hormone? J. Hepatol. 75, 1485–1490 (2021).

    Article  PubMed  Google Scholar 

  40. Rodrigues, C. M. P. et al. Perturbation of membrane dynamics in nerve cells as an early event during bilirubin-induced apoptosis. J. Lipid Res. 43, 885–894 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Gallego-Ortega, D. et al. Differential role of human choline kinase alpha and beta enzymes in lipid metabolism: implications in cancer onset and treatment. PLoS One 4, e7819 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zeisel, S. H. Nutritional genomics: defining the dietary requirement and effects of choline. J. Nutr. 141, 531–534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, X. & Zeisel, S. H. Gene expression profiling in phosphatidylethanolamine N-methyltransferase knockout mice. Brain Res. Mol. Brain Res. 134, 239–255 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Otero, N. K., Thomas, J. D., Saski, C. A., Xia, X. & Kelly, S. J. Choline supplementation and DNA methylation in the hippocampus and prefrontal cortex of rats exposed to alcohol during development. Alcohol Clin. Exp. Res. 36, 1701–1709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, L., Liu, W., Tanswell, A. K. & Luo, X. The effects of bilirubin on evoked potentials and long-term potentiation in rat hippocampus in vivo. Pediatr. Res. 53, 939–944 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Shapiro, S. M. Definition of the clinical spectrum of kernicterus and bilirubin-induced neurologic dysfunction (BIND). J. Perinatol. 25, 54–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Jensen, H. H., Matres-Marquez, S. P., Carriquiry, A., Schalinske, K. L. Choline in the diets of the US population: NHANES, 2003–2004. FASEB J. 21, LB46-LB46 (2007).

  48. Meck, W. H. & Williams, C. L. Characterization of the facilitative effects of perinatal choline supplementation on timing and temporal memory. Neuroreport 8, 2831–2835 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Bahnfleth, C. L., Strupp, B. J., Caudill, M. A., Canfield, R. L. Prenatal choline supplementation improves child sustained attention: a 7-year follow-up of a randomized controlled feeding trial. FASEB J. 36, https://doi.org/10.1096/FJ.202101217R (2022).

  50. Bell, C. C. & Aujla, J. Prenatal vitamins deficient in recommended choline intake for pregnant women. J. Fam. Med. Dis. Prev. 2, 48 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R21HD085061, NIH R21HD105071, Mary Gray Cobey Endowment and Munro Funds. The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. This material is original and has not been previously published nor has it been submitted for publication elsewhere while under consideration.

Author information

Authors and Affiliations

Authors

Contributions

M.J. substantially contributed to the acquisition and analysis of data in this article as well as drafting and revising of the article. S.T.K. substantially contributed to the analysis and interpretation of data, and drafting and revising of this article. S.V. substantially contributed to the analysis and interpretation of data, and drafting and revising of this article. N.T. substantially contributed to the design of this study and the acquisition and analysis of data in this article. M.H. substantially contributed to the design of this study and the acquisition and analysis of data in this article. C.F.B. substantially contributed to the conception and design of this study and has final approval of the version to be published. This study was funded by R21HD085061 and R21HD105071, Rockville, MD (CB).

Corresponding author

Correspondence to Cynthia F. Bearer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janampalli, M., Kitchen, S.T., Vatolin, S. et al. Choline supplementation mitigates effects of bilirubin in cerebellar granule neurons in vitro. Pediatr Res (2024). https://doi.org/10.1038/s41390-023-02968-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41390-023-02968-6

This article is cited by

Search

Quick links