Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Laboratory diagnosis of CNS infections in children due to emerging and re-emerging neurotropic viruses

Abstract

Recent decades have witnessed the emergence and re-emergence of numerous medically important viruses that cause central nervous system (CNS) infections in children, e.g., Zika, West Nile, and enterovirus/parechovirus. Children with immature immune defenses and blood–brain barrier are more vulnerable to viral CNS infections and meningitis than adults. Viral invasion into the CNS causes meningitis, encephalitis, brain imaging abnormalities, and long-term neurodevelopmental sequelae. Rapid and accurate detection of neurotropic viral infections is essential for diagnosing CNS diseases and setting up an appropriate patient management plan. The addition of new molecular assays and next-generation sequencing has broadened diagnostic capabilities for identifying infectious meningitis/encephalitis. However, the expansion of test menu has led to new challenges in selecting appropriate tests and making accurate interpretation of test results. There are unmet gaps in development of rapid, sensitive and specific molecular assays for a growing list of emerging and re-emerging neurotropic viruses. Herein we will discuss the advances and challenges in the laboratory diagnosis of viral CNS infections in children. This review not only sheds light on selection and interpretation of a suitable diagnostic test for emerging/re-emerging neurotropic viruses, but also calls for more research on development and clinical utility study of novel molecular assays.

Impact

  • Children with immature immune defenses and blood–brain barrier, especially neonates and infants, are more vulnerable to viral central nervous system infections and meningitis than adults.

  • The addition of new molecular assays and next-generation sequencing has broadened diagnostic capabilities for identifying infectious meningitis and encephalitis.

  • There are unmet gaps in the development of rapid, sensitive and specific molecular assays for a growing list of emerging and re-emerging neurotropic viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of emerging and re-emerging viral diseases that have caused central nervous system infections in the past two decades.
Fig. 2: Children, especially neonates and infants, are more vulnerable to viral CNS infections and meningitis than adults.
Fig. 3: Commonly used clinical diagnostic testing methods for emerging and re-emerging viral diseases.
Fig. 4: Classification of molecular methods for infectious diseases diagnostics based on number of targets.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Autore, G., Bernardi, L., Perrone, S. & Esposito, S. Update on viral infections involving the central nervous system in pediatric patients. Children 8, 782 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tunkel, A. R. et al. The management of encephalitis: clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 47, 303–327 (2008).

  3. Abdullahi, A. M., Sarmast, S. T. & Jahan, N. Viral infections of the central nervous system in children: a systematic review. Cureus 12, e11174 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Chow, F. C. & Glaser, C. A. Emerging and reemerging neurologic infections. Neurohospitalist 4, 173–184 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mulkey, S. B. & DeBiasi, R. L. New insights into Zika in infants and children. Trop. Med. Infect. Dis. 7, 158 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pierson, T. C. & Diamond, M. S. The emergence of Zika virus and its new clinical syndromes. Nature 560, 573–581 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Tao, L., Humphries, R. M., Banerjee, R. & Gaston, D. C. Re-emergence of parechovirus: 2017-2022 national trends of detection in cerebrospinal fluid. Open Forum Infect. Dis. 10, ofad112 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tao, L., Fill, M. A., Banerjee, R. & Humphries, R. M. Notes from the field: cluster of parechovirus central nervous system infections in young infants - Tennessee, 2022. MMWR Morb. Mortal. Wkly. Rep. 71, 977–978 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu, B., Forman, M. & Valsamakis, A. Optimization and evaluation of a novel real-time RT-PCR test for detection of parechovirus in cerebrospinal fluid. J. Virol. Methods 272, 113690 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Al Awaidy, S. T. & Khamis, F. Wild poliovirus type 1 in Oman: a re-emerging threat that requires urgent, targeted and strategic preparedness. Sultan Qaboos Univ. Med. J. 20, e1–e4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tang, Y. W. Laboratory diagnosis of CNS infections by molecular amplification techniques. Expert Opin. Med. Diagn. 1, 489–509 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Debiasi, R. L. & Tyler, K. L. Molecular methods for diagnosis of viral encephalitis. Clin. Microbiol. Rev. 17, 903–925 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Doern, C. D., Dunn, J. J. & McAdam, A. J. Pediatric clinical microbiology: it’s the little things. J. Clin. Microbiol. 54, 1412–1413 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jorgensen, J. H. et al. Manual of Clinical Microbiology 11th edn, Vol. 2 (ASM Press, 2015).

  15. Yang, D. et al. The E3 ligase TRIM56 is a host restriction factor of Zika virus and depends on its RNA-binding activity but not miRNA regulation, for antiviral function. PLoS Negl. Trop. Dis. 13, e0007537 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, B. et al. Overlapping and distinct molecular determinants dictating the antiviral activities of TRIM56 against flaviviruses and coronavirus. J. Virol. 88, 13821–13835 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jayakeerthi, R. S., Potula, R. V., Srinivasan, S. & Badrinath, S. Shell vial culture assay for the rapid diagnosis of Japanese encephalitis, West Nile and Dengue-2 viral encephalitis. Virol. J. 3, 2 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kimberlin, D. W., Barnett, E. D., Lynfield, R. & Sawyer M. H. Red Book: 2021-2024 Report of the Committee on Infectious Diseases/Committee on Infectious Diseases, American Academy of Pediatrics (American Academy of Pediatrics, 2021).

  19. Ginocchio, C. C. et al. Development, technical performance, and clinical evaluation of a NucliSens basic kit application for detection of enterovirus RNA in cerebrospinal fluid. J. Clin. Microbiol. 43, 2616–2623 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He, T., Kaplan, S., Kamboj, M. & Tang, Y. W. Laboratory diagnosis of central nervous system infection. Curr. Infect. Dis. Rep. 18, 35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gelpi, E. et al. Visualization of Central European tick-borne encephalitis infection in fatal human cases. J. Neuropathol. Exp. Neurol. 64, 506–512 (2005).

    Article  PubMed  Google Scholar 

  22. Reyes, M. G., Gardner, J. J., Poland, J. D. & Monath, T. P. St Louis encephalitis. Quantitative histologic and immunofluorescent studies. Arch. Neurol. 38, 329–334 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Nagel, M. A. & Gilden, D. Neurological complications of varicella zoster virus reactivation. Curr. Opin. Neurol. 27, 356–360 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ludlow, M. et al. Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 131, 159–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Forest, F. et al. Lethal human herpesvirus-6 encephalitis after cord blood transplant. Transpl. Infect. Dis. 13, 646–649 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Rossini, G., Gaibani, P., Vocale, C., Cagarelli, R. & Landini, M. P. Comparison of Zika virus (ZIKV) RNA detection in plasma, whole blood and urine—case series of travel-associated ZIKV infection imported to Italy, 2016. J. Infect. 75, 242–245 (2017).

    Article  PubMed  Google Scholar 

  27. Joguet, G. et al. Effect of acute Zika virus infection on sperm and virus clearance in body fluids: a prospective observational study. Lancet Infect. Dis. 17, 1200–1208 (2017).

    Article  PubMed  Google Scholar 

  28. Suy, A. et al. Prolonged Zika virus viremia during pregnancy. N. Engl. J. Med. 375, 2611–2613 (2016).

    Article  PubMed  Google Scholar 

  29. Lozier, M. J. et al. Prolonged detection of zika virus nucleic acid among symptomatic pregnant women: a cohort study. Clin. Infect. Dis. 67, 624–627 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Voermans, J. J. C. et al. Whole-blood testing for diagnosis of acute zika virus infections in routine diagnostic setting. Emerg. Infect. Dis. 25, 1394–1396 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hanson, K. E. The first fully automated molecular diagnostic panel for meningitis and encephalitis: how well does it perform, and when should it be used? J. Clin. Microbiol. 54, 2222–2224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nix, W. A. et al. Detection of all known parechoviruses by real-time PCR. J. Clin. Microbiol. 46, 2519–2524 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Esposito, S. et al. Pediatric parechovirus infections. J. Clin. Virol. 60, 84–89 (2014).

    Article  PubMed  Google Scholar 

  34. Selvaraju, S. B., Nix, W. A., Oberste, M. S. & Selvarangan, R. Optimization of a combined human parechovirus-enterovirus real-time reverse transcription-PCR assay and evaluation of a new parechovirus 3-specific assay for cerebrospinal fluid specimen testing. J. Clin. Microbiol. 51, 452–458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aizawa, Y., Koyama, A., Ishihara, T., Onodera, O. & Saitoh, A. Performance of a realtime PCR-based approach and droplet digital PCR in detecting human parechovirus type 3 RNA. J. Clin. Virol. 84, 27–31 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. She, R. C., Hymas, W. C., Taggart, E. W., Petti, C. A. & Hillyard, D. R. Performance of enterovirus genotyping targeting the VP1 and VP2 regions on non-typeable isolates and patient specimens. J. Virol. Methods 165, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Wei, D. et al. The molecular chaperone GRP78 contributes to toll-like receptor 3-mediated innate immune response to hepatitis C virus in hepatocytes. J. Biol. Chem. 291, 12294–12309 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peng, Y. et al. Naturally occurring deletions/insertions in HBV core promoter tend to decrease in hepatitis B e antigen-positive chronic hepatitis B patients during antiviral therapy. Antivir. Ther. 20, 623–632 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. LeMessurier, K. S. et al. Influenza A virus directly modulates mouse eosinophil responses. J. Leukoc. Biol. 108, 151–168 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Hanson, K. E. & Couturier, M. R. Multiplexed molecular diagnostics for respiratory, gastrointestinal, and central nervous system infections. Clin. Infect. Dis. 63, 1361–1367 (2016).

    Article  PubMed  Google Scholar 

  41. Leber, A. L. et al. Multicenter evaluation of biofire filmarray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J. Clin. Microbiol. 54, 2251–2261 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vetter, P., Schibler, M., Herrmann, J. L. & Boutolleau, D. Diagnostic challenges of central nervous system infection: extensive multiplex panels versus stepwise guided approach. Clin. Microbiol. Infect. 26, 706–712 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. BioFire FilmArray Meningitis/Encephalitis Panel: package insert (2023).

  44. Liesman, R. M. et al. Evaluation of a commercial multiplex molecular panel for diagnosis of infectious meningitis and encephalitis. J. Clin. Microbiol. 56, e01927-17 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu, B. Universal PCR primers are critical for direct sequencing-based enterovirus genotyping. J. Clin. Microbiol. 55, 339–340 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wilson, M. R. et al. Clinical metagenomic sequencing for diagnosis of meningitis and encephalitis. N. Engl. J. Med. 380, 2327–2340 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simner, P. J. et al. Development and optimization of metagenomic next-generation sequencing methods for cerebrospinal fluid diagnostics. J. Clin. Microbiol. 56, e00472-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Houten, C. B. et al. A host-protein based assay to differentiate between bacterial and viral infections in preschool children (OPPORTUNITY): a double-blind, multicentre, validation study. Lancet Infect. Dis. 17, 431–440 (2017).

    Article  PubMed  Google Scholar 

  49. Liu, B. M., Martins, T. B., Peterson, L. K. & Hill, H. R. Clinical significance of measuring serum cytokine levels as inflammatory biomarkers in adult and pediatric COVID-19 cases: a review. Cytokine 142, 155478 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, B. M. & Hill, H. R. Role of host immune and inflammatory responses in COVID-19 cases with underlying primary immunodeficiency: a review. J. Interferon Cytokine Res. 40, 549–554 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nolte, F. S. et al. Evaluation of a rapid and completely automated real-time reverse transcriptase PCR assay for diagnosis of enteroviral meningitis. J. Clin. Microbiol. 49, 528–533 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Capaul, S. E. & Gorgievski-Hrisoho, M. Detection of enterovirus RNA in cerebrospinal fluid (CSF) using NucliSens EasyQ Enterovirus assay. J. Clin. Virol. 32, 236–240 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kuypers, J. et al. Comparison of the Simplexa HSV1 & 2 Direct kit and laboratory-developed real-time PCR assays for herpes simplex virus detection. J. Clin. Virol. 62, 103–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Trovato, M., Sartorius, R., D’Apice, L., Manco, R. & De Berardinis, P. Viral emerging diseases: challenges in developing vaccination strategies. Front. Immunol. 11, 2130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soman Pillai, V., Krishna, G. & Valiya Veettil, M. Nipah virus: past outbreaks and future containment. Viruses 12, 465 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oranges, T., Dini, V. & Romanelli, M. Skin physiology of the neonate and infant: clinical implications. Adv. Wound Care 4, 587–595 (2015).

    Article  Google Scholar 

  57. Liu, B. et al. Development and evaluation of a fully automated molecular assay targeting the mitochondrial small subunit rRNA gene for the detection of Pneumocystis jirovecii in bronchoalveolar lavage fluid specimens. J. Mol. Diagn. 22, 1482–1493 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

B.M.L. was supported by the William L. Roberts Memorial Fund (553-Liu-11.20.20 and 553-Mehta-08.31.20), ARUP Institute for Experimental Pathology. This publication resulted, in part, from research supported by the District of Columbia Center for AIDS Research, an NIH funded program (P30AI117970), which is supported by the following NIH Co-Funding and Participating Institutes and Centers: NIAID, NCI, NICHD, NHLBI, NIDA, NIMH, NIA, NIDDK, NIMHD, NIDCR, NINR, FIC, and OAR. Research reported in this work was also supported by the National Center for Advancing Translational Sciences and the NIAID of the NIH under award number U54AI150225. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

B.M.L. drafted the article, Figs. 14, and Table 1. S.B.M., J.M.C. and R.L.D. revised the manuscript.

Corresponding authors

Correspondence to Benjamin M. Liu or Roberta L. DeBiasi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B.M., Mulkey, S.B., Campos, J.M. et al. Laboratory diagnosis of CNS infections in children due to emerging and re-emerging neurotropic viruses. Pediatr Res 95, 543–550 (2024). https://doi.org/10.1038/s41390-023-02930-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02930-6

This article is cited by

Search

Quick links