Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of anthropogenic climate change on pediatric viral diseases

Abstract

The adverse effects of climate change on human health are unfolding in real time. Environmental fragmentation is amplifying spillover of viruses from wildlife to humans. Increasing temperatures are expanding mosquito and tick habitats, introducing vector-borne viruses into immunologically susceptible populations. More frequent flooding is spreading water-borne viral pathogens, while prolonged droughts reduce regional capacity to prevent and respond to disease outbreaks with adequate water, sanitation, and hygiene resources. Worsening air quality and altered transmission seasons due to an increasingly volatile climate may exacerbate the impacts of respiratory viruses. Furthermore, both extreme weather events and long-term climate variation are causing the destruction of health systems and large-scale migrations, reshaping health care delivery in the face of an evolving global burden of viral disease. Because of their immunological immaturity, differences in physiology (e.g., size), dependence on caregivers, and behavioral traits, children are particularly vulnerable to climate change. This investigation into the unique pediatric viral threats posed by an increasingly inhospitable world elucidates potential avenues of targeted programming and uncovers future research questions to effect equitable, actionable change.

Impact

  • A review of the effects of climate change on viral threats to pediatric health, including zoonotic, vector-borne, water-borne, and respiratory viruses, as well as distal threats related to climate-induced migration and health systems.

  • A unique focus on viruses offers a more in-depth look at the effect of climate change on vector competence, viral particle survival, co-morbidities, and host behavior.

  • An examination of children as a particularly vulnerable population provokes programming tailored to their unique set of vulnerabilities and encourages reflection on equitable climate adaptation frameworks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Projected Emissions and Global Temperatures.
Fig. 2: Projected Range of Aedes species Mosquitos.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. NASA Goddard Institute for Space Studies. GISS Surface Temperature Analysis (GISTEMP). National Aeronautics and Space Administration https://data.giss.nasa.gov/gistemp/ (2023).

  2. Bernstein, A. S. Climate Change and Infectious Disease. in Harrison’s Principles of Internal Medicine (eds. Loscalzo, J. et al.) (McGraw-Hill Education, 2022).

  3. Mora, C. et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Change 12, 869–875 (2022).

    Article  ADS  Google Scholar 

  4. Hayhoe, K. Greater Emissions Lead to Significantly More Warming. (2017).

  5. Martens, W. J., Niessen, L. W., Rotmans, J., Jetten, T. H. & McMichael, A. J. Potential impact of global climate change on malaria risk. Environ. Health Perspect. 103, 458–464 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gona, P. N. & More, A. F. Bacterial pathogens and climate change. Lancet 400, 2161–2163 (2022).

    Article  PubMed  Google Scholar 

  7. Global Climate Change and Human Health: From Science to Practice, 2nd Edition. (Jossey-Bass, 2021).

  8. IPCC. Climate change 2022: impacts, adaptation and vulnerability. https://www.ipcc.ch/report/ar6/wg2/ (2022).

  9. UNICEF. The Climate Crisis is a Child Rights Crisis: Introducing the Children’s Climate Risk Index. https://www.unicef.org/media/105376/file/UNICEF-climate-crisis-child-rights-crisis.pdf (2021).

  10. Ahdoot, S. et al. Global climate change and children’s health. Pediatrics 136, e1468–e1484 (2015).

    Article  PubMed  Google Scholar 

  11. Di Cicco, M. E. et al. Climate change and childhood respiratory health: a call to action for paediatricians. Int. J. Environ. Res. Public. Health 17, 5344 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Perin, J. et al. Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the sustainable development goals. Lancet Child Adolesc. Health 6, 106–115 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moya, J., Bearer, C. F. & Etzel, R. A. Children’s behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics 113, 996–1006 (2004).

    Article  PubMed  Google Scholar 

  14. Kim, J. Ambient air pollution: health hazards to children. Pediatrics 114, 1699–1707 (2004).

    Article  PubMed  Google Scholar 

  15. DeVincenzo, J. P. Factors predicting childhood respiratory syncytial virus severity: what they indicate about pathogenesis. Pediatr. Infect. Dis. J. 24, S177 (2005).

    Article  PubMed  Google Scholar 

  16. Javouhey, E., Pouyau, R. & Massenavette, B. Pathophysiology of acute respiratory failure in children with bronchiolitis and effect of CPAP. Noninvasive Vent. High-Risk Infect. Mass Casualty Events 233–249, https://doi.org/10.1007/978-3-7091-1496-4_27 (2013).

  17. Hartman, R. M. et al. Risk factors for mortality among children younger than age 5 years with severe diarrhea in low- and middle-income countries: findings from the World Health Organization-coordinated Global Rotavirus and Pediatric Diarrhea Surveillance Networks. Clin. Infect. Dis. 76, e1047–e1053 (2023).

    Article  PubMed  Google Scholar 

  18. Landigran, P. & Garg, A. Children are not little adults. In Children’s health and the environment (World Health Organization, 2004).

  19. Bado, A. R., Susuman, A. S. & Nebie, E. I. Trends and risk factors for childhood diarrhea in sub-Saharan countries (1990–2013): assessing the neighborhood inequalities. Glob. Health Action 9, https://doi.org/10.3402/gha.v9.30166 (2016).

  20. Acácio, S. et al. Risk factors for death among children 0–59 months of age with moderate-to-severe diarrhea in Manhiça district, southern Mozambique. BMC Infect. Dis. 19, 322 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bennett, C. M. & Friel, S. Impacts of climate change on inequities in child health. Children 1, 461–473 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gao, J., Sun, Y., Lu, Y. & Li, L. Impact of ambient humidity on child health: a systematic review. PLOS ONE 9, e112508 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Xu, Z. et al. The impact of heat waves on children’s health: a systematic review. Int. J. Biometeorol. 58, 239–247 (2014).

    Article  PubMed  ADS  Google Scholar 

  24. Lindsey, B., Kampmann, B. & Jones, C. Maternal immunization as a strategy to decrease susceptibility to infection in newborn infants. Curr. Opin. Infect. Dis. 26, 248–253 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Silasi, M. et al. Viral infections during pregnancy. Am. J. Reprod. Immunol. 73, 199–213 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Carsetti, R. et al. The immune system of children: the key to understanding SARS-CoV-2 susceptibility? Lancet Child Adolesc. Health 4, 414–416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hanson, L. A. & Söderström, T. Human milk: Defense against infection. Prog. Clin. Biol. Res. 61, 147–159 (1981).

    CAS  PubMed  Google Scholar 

  28. Hanson, L. A. Breastfeeding provides passive and likely long-lasting active immunity. Ann. Allergy Asthma Immunol. 81, 523–534 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Sato, H., Albrecht, P., Reynolds, D. W., Stagno, S. & Ennis, F. A. Transfer of measles, mumps, and rubella antibodies from mother to infant. Its effect on measles, mumps, and rubella immunization. Am. J. Dis. Child. 1960 133, 1240–1243 (1979).

    Article  CAS  Google Scholar 

  30. Rijkers, G. T., Sanders, E. A. M., Breukels, M. A. & Zegers, B. J. M. Responsiveness of infants to capsular polysaccharides: implications for vaccine development. Res. Med. Microbiol. 7, 3 (1996).

    Google Scholar 

  31. Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. R. Soc. B Biol. Sci. 282, 20143085 (2015).

    Article  Google Scholar 

  32. Bridy-Pappas, A. E., Margolis, M. B., Center, K. J. & Isaacman, D. J. Streptococcus pneumoniae: Description of the pathogen, disease epidemiology, treatment, and prevention. Pharmacother. J. Hum. Pharmacol. Drug Ther. 25, 1193–1212 (2005).

    Article  Google Scholar 

  33. Daniels, C. C., Rogers, P. D. & Shelton, C. M. A review of pneumococcal vaccines: current polysaccharide vaccine recommendations and future protein antigens. J. Pediatr. Pharmacol. Ther. JPPT 21, 27–35 (2016).

    PubMed  Google Scholar 

  34. Albrecht, M. & Arck, P. C. Vertically transferred immunity in neonates: mothers, mechanisms and mediators. Front. Immunol. 11, 555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heymann, A., Chodick, G., Reichman, B., Kokia, E. & Laufer, J. Influence of school closure on the incidence of viral respiratory diseases among children and on health care utilization. Pediatr. Infect. Dis. J. 23, 675 (2004).

    Article  PubMed  Google Scholar 

  36. Sheffield, P. E. & Landrigan, P. J. Global climate change and children’s health: threats and strategies for prevention. Environ. Health Perspect. 119, 291–298 (2011).

    Article  PubMed  Google Scholar 

  37. Xu, Z. et al. Climate change and children’s health—a call for research on what works to protect children. Int. J. Environ. Res. Public. Health 9, 3298–3316 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oner, A. F. et al. H5N1 Avian Influenza in children. Clin. Infect. Dis. 55, 26–32 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. WFP. A generation at risk: nearly half of global food crisis hungry are children, say WFP, African Union Development Agency NEPAD, The Education Commission and education partners | World Food Programme. https://www.wfp.org/news/generation-risk-nearly-half-global-food-crisis-hungry-are-children-say-wfp-african-union (2022).

  40. Black, R. E. et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427–451 (2013).

    Article  PubMed  Google Scholar 

  41. Victora, C. G. et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340–357 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dipasquale, V., Cucinotta, U. & Romano, C. Acute malnutrition in children: pathophysiology, clinical effects and treatment. Nutrients 12, 2413 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. UNICEF, The World Bank & WHO. Levels and trends in child malnutrition. (2021).

  44. Guerrant, R. L., Schorling, J. B., McAuliffe, J. F. & Souza, M. A. D. Diarrhea as a cause and an effect of malnutrition: diarrhea prevents catch-up growth and malnutrition increases diarrhea frequency and duration. Am. J. Trop. Med. Hyg. 47, 28–35 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Brundtland, G. H. Nutrition and infection: Malnutrition and mortality in public health. Nutr. Rev. 58, S1–S4 (2000). ; discussion S63-73.

    Article  CAS  PubMed  Google Scholar 

  46. Bhaskaram, P. Micronutrient malnutrition, infection, and immunity: an overview. Nutr. Rev. 60, S40–S45 (2002).

    Article  PubMed  Google Scholar 

  47. Molla, A., Molla, A. M., Sarker, S. A., Khatoon, M. & Mujibur Rahaman, M. Effects of acute diarrhea on absorption of macronutrients during disease and after recorvery. In Diarrhea and Malnutrition 143–155 (Plenum Publishing Corporation, 1983).

  48. Martorell, R. & Yarbrough, C. The energy cost of diarrheal diseases and other common illnesses in children. in Diarrhea and Malnutrition 125–143 (Plenum Publishing Corporation, 1983).

  49. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2010 Revision. https://www.un.org/en/development/desa/publications/world-population-prospects-the-2010-revision.html (2011).

  50. Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Curseu, D., Popa, M., Sirbu, D. & Stoian, I. Potential Impact of Climate Change on Pandemic Influenza Risk. Glob. Warm. 643–657, https://doi.org/10.1007/978-1-4419-1017-2_45 (2009).

  52. Morin, C. W. et al. Avian influenza virus ecology and evolution through a climatic lens. Environ. Int. 119, 241–249 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Escudero-Pérez, B., Lalande, A., Mathieu, C. & Lawrence, P. Host–pathogen interactions influencing zoonotic spillover potential and transmission in humans. Viruses 15, 599 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gils & van, J. A. et al. Hampered foraging and migratory performance in swans infected with low-pathogenic avian influenza a virus. PLOS ONE 2, e184 (2007).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  55. Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575–576 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  57. Leendertz, S. A. J., Gogarten, J. F., Düx, A., Calvignac-Spencer, S. & Leendertz, F. H. Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. EcoHealth 13, 18–25 (2016).

    Article  PubMed  Google Scholar 

  58. Redding, D. W. et al. Impacts of environmental and socio-economic factors on emergence and epidemic potential of Ebola in Africa. Nat. Commun. 10, 4531 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  59. Kupferschmidt, K. This bat species may be the source of the Ebola epidemic that killed more than 11,000 people in West Africa. Science https://www.science.org/content/article/bat-species-may-be-source-ebola-epidemic-killed-more-11000-people-west-africa (2019).

  60. Memish, Z. A. et al. Middle East Respiratory Syndrome Coronavirus in Bats, Saudi Arabia. Emerg. Infect. Dis. 19, 1819–1823 (2013).

  61. Anthony, S. J. et al. Further Evidence for bats as the evolutionary source of Middle East Respiratory Syndrome Coronavirus. mBio 8, e00373–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, W. et al. Bats are natural reservoirs of SARS-like Coronaviruses. Science 310, 676–679 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Cui, J., Li, F. & Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Beyer, R. M., Manica, A. & Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 767, 145413 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. Horta, M. A., Ledesma, L. A., Moura, W. C. & Lemos, E. R. S. From dogs to bats: Concerns regarding vampire bat-borne rabies in Brazil. PLoS Negl. Trop. Dis. 16, e0010160 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Martin, G. et al. Climate change could increase the geographic extent of Hendra Virus spillover risk. EcoHealth 15, 509–525 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Yuen, K. Y. et al. Hendra virus: Epidemiology dynamics in relation to climate change, diagnostic tests and control measures. One Health 12, 100207 (2021).

    Article  PubMed  Google Scholar 

  68. Eby, P. et al. Pathogen spillover driven by rapid changes in bat ecology. Nature 613, 340–344 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Daszak, P. et al. Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proc. Natl Acad. Sci. 110, 3681–3688 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  70. Hjelle, B. & Glass, G. E. Outbreak of Hantavirus Infection in the Four Corners Region of the United States in the Wake of the 1997–1998 El Nino—Southern Oscillation. J. Infect. Dis. 181, 1569–1573 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Patz, J. A., Epstein, P. R., Burke, T. A. & Balbus, J. M. Global climate change and emerging infectious diseases. JAMA 275, 217–223 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Bonwitt, J. et al. At home with Mastomys and Rattus: Human-rodent interactions and potential for primary transmission of Lassa Virus in domestic spaces. Am. J. Trop. Med. Hyg. 96, 935–943 (2017).

    PubMed  PubMed Central  Google Scholar 

  73. Redding, D. W. et al. Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria. Nat. Commun. 12, 5759 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  74. Zhou, J. et al. Biological features of novel avian influenza A (H7N9) virus. Nature 499, 500–503 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  75. Tian, H. et al. Climate change suggests a shift of H5N1 risk in migratory birds. Ecol. Model. 306, 6–15 (2015).

    Article  Google Scholar 

  76. Yang, R. et al. Human infection of avian influenza A H3N8 virus and the viral origins: a descriptive study. Lancet Microbe 3, e824–e834 (2022).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  77. CDC. Human Infection with Avian Influenza A(H3N8) Virus Reported by China. Centers for Disease Control and Prevention https://www.cdc.gov/flu/avianflu/spotlights/2022-2023/avian-influenza-h3n8-china.htm (2023).

  78. Nyamwaya, D. K., Thumbi, S. M., Bejon, P., Warimwe, G. M. & Mokaya, J. The global burden of Chikungunya fever among children: A systematic literature review and meta-analysis. PLOS Glob. PLOS Glob. Public Health 2, e0000914 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. 110, 8399–8404 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Herrero, M. et al. Livestock and the environment: what have we learned in the past decade? Annu. Rev. Environ. Resour. 40, 177–202 (2015).

    Article  Google Scholar 

  81. Graham, J. P. et al. The animal-human interface and infectious disease in industrial food animal production: rethinking biosecurity and biocontainment. Public Health Rep. Wash. DC 1974 123, 282–299 (2008).

    Google Scholar 

  82. Drew, T. W. The emergence and evolution of swine viral diseases: to what extent have husbandry systems and global trade contributed to their distribution and diversity? Rev. Sci. Tech. Int. Epizoot. 30, 95–106 (2011).

    Article  CAS  Google Scholar 

  83. Looi, L.-M. & Chua, K.-B. Lessons from the Nipah virus outbreak in Malaysia. Malays. J. Pathol. 29, 63–67 (2007).

    PubMed  Google Scholar 

  84. Gilbert, M., Xiao, X. & Robinson, T. P. Intensifying poultry production systems and the emergence of avian influenza in China: a ‘One Health/Ecohealth’ epitome. Arch. Public Health 75, 48 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gibb, R., Franklinos, L. H. V., Redding, D. W. & Jones, K. E. Ecosystem perspectives are needed to manage zoonotic risks in a changing climate. BMJ m3389 (2020) https://doi.org/10.1136/bmj.m3389.

  86. Montgomery, J. M. et al. Risk factors for Nipah Virus Encephalitis in Bangladesh. Emerg. Infect. Dis. 14, 1526–1532 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Warrell, M. J. Emerging aspects of rabies infection: with a special emphasis on children. Curr. Opin. Infect. Dis. 21, 251 (2008).

    Article  PubMed  Google Scholar 

  88. Lunney, M. et al. Knowledge, attitudes and practices of rabies prevention and dog bite injuries in urban and peri-urban provinces in Cambodia, 2009. Int. Health 4, 4–9 (2012).

    Article  PubMed  Google Scholar 

  89. Morin, C. W., Comrie, A. C. & Ernst, K. Climate and Dengue transmission: evidence and implications. Environ. Health Perspect. 121, 1264–1272 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Messina, J. P. et al. The current and future global distribution and population at risk of dengue. Nat. Microbiol. 4, 1508–1515 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Greer, A., Ng, V. & Fisman, D. Public health: Climate change and infectious diseases in North America: the road ahead. CMAJ Can. Med. Assoc. J. 178, 715 (2008).

    Google Scholar 

  93. Rocklöv, J. & Dubrow, R. Climate change: an enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 479–483 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Clim. Vectorborne Dis. Am. J. Prev. Med. 35, 436–450 (2008).

    Article  Google Scholar 

  95. El-Sayed, A. & Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. Int. 27, 22336–22352 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Daniel, M., Danielova, Kriz, B., Jirsa, A. & Nozicka, J. Shift of the tick Ixodes ricinus and tick-borne encephalitis to higher altitudes in Central Europe. Eur. J. Clin. Microbiol. Infect. Dis. 22, 327–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Daniel, M., Danielová, V., Kříž, B. & Kott, I. An attempt to elucidate the increased incidence of tick-borne encephalitis and its spread to higher altitudes in the Czech Republic. Int. J. Med. Microbiol. 293, 55–62 (2004).

    PubMed  Google Scholar 

  98. Taylor, D. et al. Environmental change and Rift Valley fever in eastern Africa: projecting beyond HEALTHY FUTURES. Geospatial Health 11, 115–128 (2016).

    Article  Google Scholar 

  99. Campbell, L. P. et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–9 (2015).

    Article  Google Scholar 

  100. Ebi, K. L. & Paulson, J. A. Climate change and child health in the United States. Curr. Probl. Pediatr. Adolesc. Health Care 40, 2–18 (2010).

    Article  PubMed  Google Scholar 

  101. Paz, S. Climate change impacts on West Nile virus transmission in a global context. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20130561 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A. & Rocklöv, J. Vectorial Capacity of Aedes aegypti: Effects of temperature and implications for global Dengue Epidemic Potential. PLOS ONE 9, e89783 (2014).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  103. Tran, B.-L., Tseng, W.-C., Chen, C.-C. & Liao, S.-Y. Estimating the threshold effects of climate on Dengue: A case study of Taiwan. Int. J. Environ. Res. Public. Health 17, 1392 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Colón-González, F. J., Fezzi, C., Lake, I. R. & Hunter, P. R. The effects of weather and climate change on Dengue. PLoS Negl. Trop. Dis. 7, e2503 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. McMichael, C., Barnett, J. & McMichael, A. J. An Ill Wind? Climate change, migration, and health. Environ. Health Perspect. 120, 646–654 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Watts, N. et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. Lancet 394, 1836–1878 (2019).

    Article  PubMed  Google Scholar 

  107. Gubler, D. J. Dengue, urbanization and globalization: the unholy trinity of the 21st Century. Trop. Med. Health 39, S3–S11 (2011).

    Article  Google Scholar 

  108. Lowe, R. et al. Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. Lancet Planet. Health 5, e209–e219 (2021).

    Article  PubMed  Google Scholar 

  109. Thomson, M. C. & Stanberry, L. R. Climate change and vectorborne diseases. N. Engl. J. Med. 387, 1969–1978 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. WHO. Pakistan Floods Situation Report. https://cdn.who.int/media/docs/default-source/documents/emergencies/sitrep-flood-situation-14th-oct-2022-ml-aa.pdf?sfvrsn=9f42ba18_1&download=true (2022).

  111. UNICEF. Devastating floods in Pakistan. United Nations Childrens Fund https://www.unicef.org/emergencies/devastating-floods-pakistan-2022 (2022).

  112. Mondal, N. The resurgence of dengue epidemic and climate change in India. Lancet 401, 727–728 (2023).

    Article  PubMed  Google Scholar 

  113. Khan, J., Khan, I., Ghaffar, A. & Khalid, B. Epidemiological trends and risk factors associated with dengue disease in Pakistan (1980–2014): a systematic literature search and analysis. BMC Public Health 18, 745 (2018).

  114. Xuan, L. T. T., Van Hau, P., Thu, D. T. & Toan, D. T. T. Estimates of meteorological variability in association with dengue cases in a coastal city in northern Vietnam: an ecological study. Glob. Health Action 7, 52–58 (2014).

    Article  Google Scholar 

  115. Phung, D. et al. Identification of the prediction model for dengue incidence in Can Tho city, a Mekong Delta area in Vietnam. Acta Trop. 141, 88–96 (2015).

    Article  PubMed  Google Scholar 

  116. Mala, S. & Jat, M. K. Implications of meteorological and physiographical parameters on dengue fever occurrences in Delhi. Sci. Total Environ. 650, 2267–2283 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Carvajal, T. M. et al. Machine learning methods reveal the temporal pattern of dengue incidence using meteorological factors in metropolitan Manila, Philippines. BMC Infect. Dis. 18, 183 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Alkhaldy, I. Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia—A generalised linear model with break-point analysis. Acta Trop. 168, 9–15 (2017).

    Article  PubMed  Google Scholar 

  119. Almeida, A. P. G. et al. Bioecology and vectorial capacity of Aedes albopictus (Diptera: Culicidae) in Macao, China, in relation to Dengue Virus Transmission. J. Med. Entomol. 42, 419–428 (2005).

    Article  PubMed  Google Scholar 

  120. Bai, L., Morton, L. C. & Liu, Q. Climate change and mosquito-borne diseases in China: a review. Glob. Health 9, 10 (2013).

    Article  Google Scholar 

  121. Kulkarni, M. A., Duguay, C. & Ost, K. Charting the evidence for climate change impacts on the global spread of malaria and dengue and adaptive responses: a scoping review of reviews. Glob. Health 18, 1 (2022).

    Article  Google Scholar 

  122. Giesen, C. et al. The impact of climate change on mosquito-borne diseases in Africa. Pathog. Glob. Health 114, 287–301 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Watts, N. et al. The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet 397, 129–170 (2021).

    Article  PubMed  Google Scholar 

  124. Taylor, L. Dengue and chikungunya cases surge as climate change spreads arboviral diseases to new regions. BMJ Online 380, 717–717 (2023).

    Article  PubMed  Google Scholar 

  125. Proestos, Y. et al. Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–16 (2015).

    Google Scholar 

  126. Baylis, M. Potential impact of climate change on emerging vector-borne and other infections in the UK. Environ. Health 16, 112 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zeller, H., Van Bortel, W. & Sudre, B. Chikungunya: Its history in Africa and Asia and its spread to new regions in 2013–2014. J. Infect. Dis. 214, S436–S440 (2016).

    Article  PubMed  Google Scholar 

  128. Tjaden, N. B. et al. Modelling the effects of global climate change on Chikungunya transmission in the 21st century. Sci. Rep. 7, 3813 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  129. Oliveira, E. Cde et al. Short report: Introduction of chikungunya virus ECSA genotype into the Brazilian Midwest and its dispersion through the Americas. PLoS Negl. Trop. Dis. 15, e0009290 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Souza & de, W. M. et al. Spatiotemporal dynamics and recurrence of chikungunya virus in Brazil: an epidemiological study. Lancet Microbe 4, e319–e329 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Rezza, G. Dengue and chikungunya: long-distance spread and outbreaks in naïve areas. Pathog. Glob. Health 108, 349–355 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Tjaden, N. B., Cheng, Y., Beierkuhnlein, C. & Thomas, S. M. Chikungunya beyond the tropics: where and when do we expect disease transmission in Europe? Viruses 13, 1024 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Fischer, D. et al. Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector’s climatic suitability and virus’ temperature requirements. Int. J. Health Geogr. 12, 51–51 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. WHO. Zika virus. https://www.who.int/news-room/fact-sheets/detail/zika-virus.

  135. Wen, Z., Song, H. & Ming, G. How does Zika virus cause microcephaly? Genes Dev. 31, 849–861 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tesla, B. et al. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc. R. Soc. B Biol. Sci. 285, 20180795 (2018).

    Article  Google Scholar 

  137. Antoniou, E. et al. Zika Virus and the risk of developing microcephaly in infants: a systematic review. Int. J. Environ. Res. Public. Health 17, 3806 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Adams Waldorf, K. M., Olson, E. M., Nelson, B. R., Little, M.-T. E. & Rajagopal, L. The aftermath of Zika: Need for long-term monitoring of exposed children. Trends Microbiol 26, 729–732 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Shapiro-Mendoza, C. K. et al. Pregnancy outcomes after maternal Zika Virus infection during pregnancy–U.S. Territories, January 1, 2016–April 25, 2017. MMWR Morb. Mortal. Wkly. Rep. 66, 615–621 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hoen, B. et al. Pregnancy outcomes after ZIKV infection in French territories in the Americas. N. Engl. J. Med. 378, 985–994 (2018).

    Article  PubMed  Google Scholar 

  141. Costa, M. C. et al. Case fatality rate related to microcephaly congenital Zika Syndrome and associated factors: a nationwide retrospective study in Brazil. Viruses 12, 1228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ali, S. et al. Environmental and social change drive the explosive emergence of Zika Virus in the Americas. PLoS Negl. Trop. Dis. 11, e0005135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Sadeghieh, T. et al. Zika virus outbreak in Brazil under current and future climate. Epidemics 37, 100491 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Ngonghala, C. N. et al. Effects of changes in temperature on Zika dynamics and control. J. R. Soc. Interface 18, 20210165 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ryan, S. J. et al. Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Change Biol. 27, 84–93 (2021).

    Article  ADS  Google Scholar 

  146. Paz, S. The west nile virus outbreak in Israel (2000) from a new perspective: The regional impact of climate change. Int. J. Environ. Health Res. 16, 1–13 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Pradier, S., Lecollinet, S. & Leblond, A. West Nile virus epidemiology and factors triggering change in its distribution in Europe. Rev. Sci. Tech. Int. Epizoot. 31, 829–844 (2012).

    Article  CAS  Google Scholar 

  148. Farooq, Z. et al. European projections of West Nile virus transmission under climate change scenarios. One Health 16, 100509 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hu, W. et al. Development of a predictive model for Ross River Virus Disease in Brisbane, Australia. Am. J. Trop. Med. Hyg. 71, 129–137 (2004).

    Article  PubMed  Google Scholar 

  150. Tong, S., Hu, W. & McMichael, A. J. Climate variability and Ross River virus transmission in Townsville Region, Australia, 1985–1996. Trop. Med. Int. Health 9, 298–304 (2004).

    Article  PubMed  Google Scholar 

  151. Werner, A. K. et al. Environmental drivers of Ross River virus in southeastern Tasmania, Australia: towards strengthening public health interventions. Epidemiol. Infect. 140, 359–371 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Naish, S. et al. Socio-environmental predictors of Barmah forest virus transmission in coastal areas, Queensland, Australia. Trop. Med. Int. Health 14, 247–256 (2009).

    Article  PubMed  Google Scholar 

  153. Naish, S., Mengersen, K., Hu, W. & Tong, S. Forecasting the future risk of Barmah Forest Virus disease under climate change scenarios in Queensland, Australia. PloS One 8, e62843–e62843 (2013).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  154. Sakkas, H., Bozidis, P., Franks, A., Papadopoulou, C. & Oropouche Fever: A review. Viruses 10, 175 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Files, M. A. et al. Baseline mapping of Oropouche virology, epidemiology, therapeutics, and vaccine research and development. Npj Vaccines 7, 1–10 (2022).

    Article  Google Scholar 

  156. Diagne, C. T. et al. Mayaro Virus Pathogenesis and transmission mechanisms. Pathogens 9, 738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Alomar, A. A. & Alto, B. W. Temperature-mediated effects on Mayaro Virus Vector competency of Florida Aedes aegypti Mosquito Vectors. Viruses 14, 880 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Semret, M., Ndao, M., Jacobs, J. & Yansouni, C. P. Point-of-care and point-of-‘can’: leveraging reference-laboratory capacity for integrated diagnosis of fever syndromes in the tropics. Clin. Microbiol. Infect. 24, 836–844 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Romero-Alvarez, D. & Escobar, L. E. Oropouche fever, an emergent disease from the Americas. Microbes Infect. 20, 135–146 (2018).

    Article  PubMed  Google Scholar 

  160. Caicedo, E.-Y. et al. The epidemiology of Mayaro virus in the Americas: A systematic review and key parameter estimates for outbreak modelling. PLoS Negl. Trop. Dis. 15, e0009418 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Romandini, A. et al. Antibiotic resistance in pediatric infections: global emerging threats, predicting the near future. Antibiotics 10, 393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jaenson, T. G., Hjertqvist, M., Bergström, T. & Lundkvist, Å. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasit. Vectors 5, 184 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Blair, P. W. et al. An emerging biothreat: Crimean-Congo Hemorrhagic Fever Virus in Southern and Western Asia. Am. J. Trop. Med. Hyg. 100, 16–23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Gilbert, L. The impacts of climate change on ticks and tick-borne disease risk. Annu. Rev. Entomol. 66, 373–388 (2021).

    Article  CAS  PubMed  Google Scholar 

  165. Danielová, V., Kliegrová, S., Daniel, M. & Benes, C. Influence of climate warming on tickborne encephalitis expansion to higher altitudes over the last decade (1997-2006) in the Highland Region (Czech Republic). Cent. Eur. J. Public Health 16, 4–11 (2008).

    Article  PubMed  Google Scholar 

  166. Lukan, M., Bullova, E. & Petko, B. Climate warming and Tick-borne Encephalitis, Slovakia. Emerg. Infect. Dis. 16, 524–526 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nuttall, P. A. Climate change impacts on ticks and tick-borne infections. Biologia 77, 1503–1512 (2022).

    Article  Google Scholar 

  168. Ogden, N. H., Ben Beard, C., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on ixodid ticks and the pathogens they transmit. Predictions Observations. J. Med. Entomol. 58, 1536–1545 (2021).

    Article  PubMed  Google Scholar 

  169. Daniel, M. et al. Increased relative risk of tick-borne Encephalitis in warmer weather. Front. Cell. Infect. Microbiol. 8, 1012–1025 (2018).

  170. Nah, K., Bede-Fazekas, Á., Trájer, A. J. & Wu, J. The potential impact of climate change on the transmission risk of tick-borne encephalitis in Hungary. BMC Infect. Dis. 20, 34 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Tokarevich, N. K. et al. The impact of climate change on the expansion of Ixodes persulcatus habitat and the incidence of tick-borne encephalitis in the north of European Russia. Glob. Health Action 4, 8448 (2011).

    Article  PubMed  Google Scholar 

  172. Nili, S., Khanjani, N., Jahani, Y. & Bakhtiari, B. The effect of climate variables on the incidence of Crimean Congo Hemorrhagic Fever (CCHF) in Zahedan, Iran. BMC Public Health 20, 1893 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ansari, H. et al. Crimean-Congo hemorrhagic fever and its relationship with climate factors in southeast Iran: A 13-year experience. J. Infect. Dev. Ctries. 8, 749–757 (2014).

    Article  PubMed  Google Scholar 

  174. Mostafavi, E., Chinikar, S., Bokaei, S. & Haghdoost, A. Temporal modeling of Crimean-Congo hemorrhagic fever in eastern Iran. Int. J. Infect. Dis. 17, e524–e528 (2013).

    Article  PubMed  Google Scholar 

  175. Papa, A. et al. Crimean-Congo Hemorrhagic Fever Virus, Greece. Emerg. Infect. Dis. 20, 288–290 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Stavropoulou, E. & Troillet, N. Crimean-Congo hemorrhagic fever: an emerging viral hemorrhagic fever in Europe. Rev. Médicale Suisse 14, 1786–1789 (2018).

    Google Scholar 

  177. Bernard, C. et al. Systematic Review on Crimean–Congo Hemorrhagic Fever Enzootic Cycle and Factors Favoring Virus Transmission: Special Focus on France, an Apparently Free-Disease Area in Europe. Front. Vet. Sci. 9, 932304 (2022).

  178. Kuehnert, P. A., Stefan, C. P., Badger, C. V. & Ricks, K. M. Crimean-Congo Hemorrhagic Fever Virus (CCHFV): A silent but widespread threat. Curr. Trop. Med. Rep. 8, 141–147 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Dreshaj, S. et al. Current situation of Crimean-Congo hemorrhagic fever in Southeastern Europe and neighboring countries: a public health risk for the European Union? Travel Med. Infect. Dis. 14, 81–91 (2016).

    Article  PubMed  Google Scholar 

  180. Kuehn, L. & McCormick, S. Heat exposure and maternal health in the face of climate change. Int. J. Environ. Res. Public. Health 14, 853 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Lawn, J., Kerber, K., Enweronu-Laryea, C. & Massee Bateman, O. Newborn survival in low resource settings—are we delivering? BJOG Int. J. Obstet. Gynaecol. 116, 49–59 (2009).

    Article  Google Scholar 

  182. Cappelletti, M., Della Bella, S., Ferrazzi, E., Mavilio, D. & Divanovic, S. Inflammation and preterm birth. J. Leukoc. Biol. 99, 67–78 (2016).

    Article  CAS  PubMed  Google Scholar 

  183. Nadeau, H. C. G., Subramaniam, A. & Andrews, W. W. Infection and preterm birth. Semin. Fetal Neonatal Med. 21, 100–105 (2016).

    Article  PubMed  Google Scholar 

  184. Olsen, S. J. et al. The effect of influenza vaccination on birth outcomes in a cohort of pregnant women in Lao PDR, 2014–2015. Clin. Infect. Dis. 63, 487–494 (2016).

    Article  PubMed  Google Scholar 

  185. Bobei, T.-I. et al. The impact of SARS-CoV-2 infection on premature birth—our experience as COVID Center. Medicina 58, 587 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Kayem, N. D. et al. Lassa fever in pregnancy: a systematic review and meta-analysis. Trans. R. Soc. Trop. Med. Hyg. 114, 385–396 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Coler, B. et al. Common pathways targeted by viral hemorrhagic fever viruses to infect the placenta and increase the risk of stillbirth. Placenta https://doi.org/10.1016/j.placenta.2022.10.002 (2022).

  188. Moucheraud, C. et al. Consequences of maternal mortality on infant and child survival: a 25-year longitudinal analysis in Butajira Ethiopia (1987-2011). Reprod. Health 12, S4 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Paixão, E. S., Teixeira, M. G., Costa, M., da, C. N., Barreto, M. L. & Rodrigues, L. C. Symptomatic Dengue during Pregnancy and Congenital Neurologic Malformations. Emerg. Infect. Dis. 24, 1748–1750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Satterfield-Nash, A. Health and Development at Age 19–24 months of 19 children who were born with microcephaly and laboratory evidence of congenital Zika Virus Infection During the 2015 Zika Virus Outbreak—Brazil, 2017. MMWR Morb. Mortal. Wkly. Rep. 66, 1347–1351 (2017).

  191. Contopoulos-Ioannidis, D., Newman-Lindsay, S., Chow, C. & LaBeaud, A. D. Mother-to-child transmission of Chikungunya virus: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 12, e0006510 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Neu, N., Duchon, J. & Zachariah, P. TORCH Infections. Clin. Perinatol. 42, 77–103 (2015).

    Article  PubMed  Google Scholar 

  193. Pesch, M. H., Kuboushek, K., McKee, M. M., Thorne, M. C. & Weinberg, J. B. Congenital cytomegalovirus infection. BMJ 373, n1212 (2021).

    Article  PubMed  Google Scholar 

  194. Beigi, R. H. et al. The need for inclusion of pregnant women in COVID-19 vaccine trials. Vaccine 39, 868–870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dad, N., Buhmaid, S. & Mulik, V. Vaccination in pregnancy – The when, what and how? Eur. J. Obstet. Gynecol. Reprod. Biol. 265, 1–6 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  197. Carlton, E. J., Woster, A. P., DeWitt, P., Goldstein, R. S. & Levy, K. A systematic review and meta-analysis of ambient temperature and diarrhoeal diseases. Int. J. Epidemiol. 45, 117–130 (2016).

    Article  PubMed  Google Scholar 

  198. Levy, K., Smith, S. M. & Carlton, E. J. Climate change impacts on waterborne diseases: Moving toward designing interventions. Curr. Environ. Health Rep. 5, 272–282 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Thiam, S. et al. Association between childhood diarrhoeal incidence and climatic factors in urban and rural settings in the Health District of Mbour, Senegal. Int. J. Environ. Res. Public. Health 14, 1049 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Dimitrova, A., Gershunov, A., Levy, M. C. & Benmarhnia, T. Uncovering social and environmental factors that increase the burden of climate-sensitive diarrheal infections on children. Proc. Natl Acad. Sci. 120, e2119409120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gall, A. M., Mariñas, B. J., Lu, Y., Shisler, J. L. & Waterborne Viruses: A barrier to safe drinking water. PLoS Pathog. 11, e1004867 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Herrador, B. G. et al. Association between heavy precipitation events and waterborne outbreaks in four Nordic countries, 1992-2012. J. Water Health 14, 1019–1027 (2016).

    Article  Google Scholar 

  203. Levy, K., Woster, A. P., Goldstein, R. S. & Carlton, E. J. Untangling the impacts of climate change on waterborne diseases: a systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environ. Sci. Technol. 50, 4905–4922 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  204. Semenza, J. C. & Paz, S. Climate change and infectious disease in Europe: Impact, projection and adaptation. Lancet Reg. Health Eur. 9, 100230–100230 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Tavakol-Davani, H. et al. How does climate change affect combined sewer overflow in a system benefiting from rainwater harvesting systems? Sustain. Cities Soc. 27, 430–438 (2016).

    Article  Google Scholar 

  206. Azage, M., Kumie, A., Worku, A. & Bagtzoglou, A. C. Childhood diarrhea exhibits spatiotemporal variation in Northwest Ethiopia: A SaTScan spatial statistical analysis. PloS One 10, e0144690–e0144690 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  207. McIver, L. J. et al. Review of climate change and water-related diseases in Cambodia and findings from stakeholder knowledge assessments. Asia. Pac. J. Public Health 28, 49S–58S (2016).

    Article  PubMed  Google Scholar 

  208. Horn, L. M. et al. Association between precipitation and diarrheal disease in Mozambique. Int. J. Environ. Res. Public. Health 15, 709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Liu, Z. et al. Association between floods and infectious diarrhea and their effect modifiers in Hunan province, China: A two-stage model. Sci. Total Environ. 626, 630–637 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  210. Sharma, S., Sachdeva, P. & Virdi, J. S. Emerging water-borne pathogens. Appl. Microbiol. Biotechnol. 61, 424–428 (2003).

    Article  CAS  PubMed  Google Scholar 

  211. Zhao, H. et al. Detection of a Bocavirus circular genome in fecal specimens from children with acute Diarrhea in Beijing, China. PLoS ONE 7, e48980 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  212. Lee, C. Porcine epidemic diarrhea virus: An emerging and re-emerging epizootic swine virus. Virol. J. 12, 193 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Ahmed, K. et al. An outbreak of gastroenteritis by emerging norovirus GII.2[P16] in a kindergarten in Kota Kinabalu, Malaysian Borneo. Sci. Rep. 10, 7137 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  214. Becker-Dreps, S., González, F. & Bucardo, F. Sapovirus: an emerging cause of childhood diarrhea. Curr. Opin. Infect. Dis. 33, 388–397 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Kumazaki, M. & Usuku, S. Influence of herd immunity on norovirus: a long-term field study of repeated viral gastroenteritis outbreaks at the same facilities. BMC Infect. Dis. 23, 265 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. WHO. Statement of the thirty-fourth Polio IHR Emergency Committee. World Health Organization https://www.who.int/news/item/02-02-2023-statement-of-the-thirty-fourth-polio-ihr-emergency-committee (2023).

  217. WHO. Poliomyelitis. World Health Organization https://www.who.int/news-room/fact-sheets/detail/poliomyelitis (2022).

  218. Nagata, J. M., Epstein, A., Ganson, K. T., Benmarhnia, T. & Weiser, S. D. Drought and child vaccination coverage in 22 countries in sub-Saharan Africa: A retrospective analysis of national survey data from 2011 to 2019. PLoS Med 18, e1003678 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Mahmud, A. S., Martinez, P. P., He, J. & Baker, R. E. The impact of climate change on vaccine-preventable diseases: insights from current research and new directions. Curr. Environ. Health Rep. 7, 384–391 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Coates, S. J., Davis, M. D. P. & Andersen, L. K. Temperature and humidity affect the incidence of hand, foot, and mouth disease: a systematic review of the literature–a report from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 58, 388–399 (2019).

    Article  PubMed  Google Scholar 

  221. Yi, L. et al. The impact of climate variability on infectious disease transmission in China: Current knowledge and further directions. Environ. Res. 173, 255–261 (2019).

    Article  CAS  PubMed  Google Scholar 

  222. Qi, H. et al. Impact of meteorological factors on the incidence of childhood hand, foot, and mouth disease (HFMD) analyzed by DLNMs-based time series approach. Infect. Dis. Poverty 7, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Xu, M. et al. Non-linear association between exposure to ambient temperature and children’s hand-foot-and-mouth disease in Beijing, China. PLOS ONE 10, e0126171 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Jiang, F. C. et al. Meteorological factors affect the hand, foot, and mouth disease epidemic in Qingdao, China, 2007–2014. Epidemiol. Infect. 144, 2354–2362 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Du, Z. et al. Weather effects on hand, foot, and mouth disease at individual level: a case-crossover study. BMC Infect. Dis. 19, 1029 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Wu, H., Wang, H., Wang, Q., Xin, Q. & Lin, H. The effect of meteorological factors on adolescent hand, foot, and mouth disease and associated effect modifiers. Glob. Health Action 7, 24664 (2014).

    Article  PubMed  Google Scholar 

  227. Hao, J. et al. Impact of ambient temperature and relative humidity on the incidence of hand-foot-mouth disease in Wuhan, China. Int. J. Environ. Res. Public. Health 17, 428 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Onozuka, D. & Hashizume, M. Effect of weather variability on the incidence of mumps in children: a time-series analysis. Epidemiol. Infect. 139, 1692–1700 (2011).

    Article  CAS  PubMed  Google Scholar 

  229. Nhat, P. D., Phu, V. L., Chính, Đ. V., Tam, D. T. M. & Thanh, M. T. Impact of weather factors on hospital admission of hand, foot and mouth disease under climate change scenarios in Ho Chi Minh City. IOP Conf. Ser. Earth Environ. Sci. 964, 012016 (2022).

    Article  Google Scholar 

  230. Hanna, J., Brauer, P. R., Morse, E., Berson, E. & Mehra, S. Epidemiological analysis of croup in the emergency department using two national datasets. Int. J. Pediatr. Otorhinolaryngol. 126, 109641 (2019).

    Article  PubMed  Google Scholar 

  231. Dalziel, S. R. et al. Bronchiolitis. Lancet 400, 392–406 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Marangu, D. & Zar, H. J. Childhood pneumonia in low-and-middle-income countries: An update. Paediatr. Respir. Rev. 32, 3–9 (2019).

    PubMed  PubMed Central  Google Scholar 

  233. Simoes, E. A. F. et al. Acute respiratory infections in children. in Disease Control Priorities in Developing Countries (eds. Jamison, D. T. et al.) (The International Bank for Reconstruction and Development/The World Bank, 2006).

  234. Caballero, M. T. & Polack, F. P. Respiratory syncytial virus is an “opportunistic” killer. Pediatr. Pulmonol. 53, 664–667 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Al-Toum, R., Bdour, S. & Ayyash, H. Epidemiology and clinical characteristics of respiratory syncytial virus infections in Jordan. J. Trop. Pediatr. 52, 282–287 (2006).

    Article  PubMed  Google Scholar 

  236. Viegas, M., Barrero, P. R., Maffey, A. F. & Mistchenko, A. S. Respiratory viruses seasonality in children under five years of age in Buenos Aires, ArgentinaA five-year analysis. J. Infect. 49, 222–228 (2004).

    Article  PubMed  Google Scholar 

  237. Nenna, R. et al. Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: An observational study. Environ. Res. 158, 188–193 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Tchidjou, H. K. et al. Seasonal pattern of hospitalization from acute respiratory infections in Yaoundé, Cameroon. J. Trop. Pediatr. 56, 317–320 (2010).

    Article  PubMed  Google Scholar 

  239. Nascimento-Carvalho, C. M. et al. Seasonal patterns of viral and bacterial infections among children hospitalized with community-acquired pneumonia in a tropical region. Scand. J. Infect. Dis. 42, 839–844 (2010).

    Article  PubMed  Google Scholar 

  240. Dowell, S. F. & Ho, M. S. Seasonality of infectious diseases and severe acute respiratory syndrome–what we don’t know can hurt us. Lancet Infect. Dis. 4, 704–708 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  241. He, D., Chiu, A. P. Y., Lin, Q. & Cowling, B. J. Differences in the seasonality of Middle East respiratory syndrome coronavirus and influenza in the Middle East. Int. J. Infect. Dis. 40, 15–16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Darling, N. D. et al. Retrospective, epidemiological cluster analysis of the Middle East respiratory syndrome coronavirus (MERS-CoV) epidemic using open source data. Epidemiol. Infect. 145, 3106–3114 (2017).

    Article  CAS  PubMed  Google Scholar 

  243. Tuncer, N. & Martcheva, M. Modeling seasonality in Avian Influenza H5N1. J. Biol. Syst. 21, 1340004 (2013).

    Article  MathSciNet  Google Scholar 

  244. Davis, R. E., Dougherty, E., McArthur, C., Huang, Q. S. & Baker, M. G. Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand. Influenza Other Respir. Viruses 10, 310–313 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Marr, L. C., Tang, J. W., Van Mullekom, J. & Lakdawala, S. S. Mechanistic insights into the effect of humidity on airborne influenza virus survival, transmission and incidence. J. R. Soc. Interface 16, 20180298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Lam, E. K. S., Morris, D. H., Hurt, A. C., Barr, I. G. & Russell, C. A. The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia. Nat. Commun. 11, 2741 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  247. Leung, N. H. L. Transmissibility and transmission of respiratory viruses. Nat. Rev. Microbiol. 19, 528–545 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Miyayo, S. F., Owili, P. O., Muga, M. A. & Lin, T.-H. Analysis of Pneumonia occurrence in relation to climate change in Tanga, Tanzania. Int. J. Environ. Res. Public. Health 18, 4731 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Sajadi, M. M. et al. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of Coronavirus Disease 2019 (COVID-19). JAMA Netw. Open 3, e2011834 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Liu, X. et al. The role of seasonality in the spread of COVID-19 pandemic. Environ. Res. 195, 110874 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  251. D’Amico, F. et al. COVID-19 seasonality in temperate countries. Environ. Res. 206, 112614 (2022).

    Article  PubMed  Google Scholar 

  252. Towers, S. et al. Climate change and influenza: the likelihood of early and severe influenza seasons following warmer than average winters. PLoS Curr. 5, ecurrents.flu.3679b56a3a5313dc7c043fb944c6f138 (2013).

  253. Mirsaeidi, M. et al. Climate change and respiratory infections. Ann. Am. Thorac. Soc. 13, 1223–1230 (2016).

    Article  PubMed  Google Scholar 

  254. Irwin, C. K. et al. Using the systematic review methodology to evaluate factors that influence the persistence of influenza virus in environmental matrices. Appl. Environ. Microbiol. 77, 1049–1060 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  255. Dombrovsky, L. et al. Modeling evaporation of water droplets as applied to survival of airborne viruses. Atmosphere 11, 965 (2020).

    Article  CAS  ADS  Google Scholar 

  256. Takaro, T. K., Knowlton, K. & Balmes, J. R. Climate change and respiratory health: current evidence and knowledge gaps. Expert Rev. Respir. Med. 7, 349–361 (2013).

    Article  CAS  PubMed  Google Scholar 

  257. Evans, G. W. Projected behavioral impacts of global climate change. Annu. Rev. Psychol. 70, 449–474 (2019).

    Article  PubMed  Google Scholar 

  258. Nardell, E., Lederer, P., Mishra, H., Nathavitharana, R. & Theron, G. Cool but dangerous: How climate change is increasing the risk of airborne infections. Indoor Air 30, 195–197 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Zhao, Q. et al. Global climate change and human health: Pathways and possible solutions. Eco-Environ. Health 1, 53–62 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Staddon, C. et al. Water insecurity compounds the global coronavirus crisis. Water Int 45, 416–422 (2020).

    Article  Google Scholar 

  261. Haddout, S., Priya, K. L., Hoguane, A. M. & Ljubenkov, I. Water scarcity: A big challenge to slums in Africa to fight against COVID-19. Sci. Technol. Libr. 39, 281–288 (2020).

    Article  Google Scholar 

  262. Xu, R. et al. Wildfires, global climate change, and human health. N. Engl. J. Med. 383, 2173–2181 (2020).

    Article  PubMed  Google Scholar 

  263. Romanello, M. et al. The 2022 report of the Lancet Countdown on health and climate change: health at the mercy of fossil fuels. Lancet 400, 1619–1654 (2022).

    Article  PubMed  Google Scholar 

  264. Neuzil, K. M., Wright, P. F., Mitchel, E. F. & Griffin, M. R. The burden of influenza illness in children with asthma and other chronic medical conditions. J. Pediatr. 137, 856–864 (2000).

    Article  CAS  PubMed  Google Scholar 

  265. Wu, P. & Hartert, T. V. Evidence for a causal relationship between respiratory syncytial virus infection and asthma. Expert Rev. Anti Infect. Ther. 9, 731–745 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Guarnieri, M. & Balmes, J. R. Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Victora, C. G. et al. Countdown to 2015: a decade of tracking progress for maternal, newborn, and child survival. Lancet Lond. Engl. 387, 2049–2059 (2016).

    Article  Google Scholar 

  268. Odo, D. B. et al. Ambient air pollution and acute respiratory infection in children aged under 5 years living in 35 developing countries. Environ. Int. 159, 107019 (2022).

    Article  CAS  PubMed  Google Scholar 

  269. Kodgule, R. & Salvi, S. Exposure to biomass smoke as a cause for airway disease in women and children. Curr. Opin. Allergy Clin. Immunol. 12, 82–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  270. World Health Organization. Air pollution and child health: prescribing clean air. Summary. https://www.who.int/publications/i/item/WHO-CED-PHE-18-01 (2018).

  271. Larson, P. S. et al. Long-term PM2.5 exposure is associated with symptoms of acute respiratory infections among children under five years of age in Kenya, 2014. Int. J. Environ. Res. Public. Health 19, 2525 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Werz, M. & Hoffman, M. Europe’s twenty-first century challenge: climate change, migration and security. Eur. View 15, 145–154 (2016).

    Article  Google Scholar 

  273. Kaczan, D. J. & Orgill-Meyer, J. The impact of climate change on migration: a synthesis of recent empirical insights. Clim. Change 158, 281–300 (2020).

    Article  ADS  Google Scholar 

  274. Hoffmann, R., Dimitrova, A., Muttarak, R., Crespo Cuaresma, J. & Peisker, J. A meta-analysis of country-level studies on environmental change and migration. Nat. Clim. Change 10, 904–912 (2020).

    Article  ADS  Google Scholar 

  275. UNICEF. New guidelines provide first global policy framework on protecting children on the move in face of climate change. https://www.unicef.org/press-releases/new-guidelines-provide-first-global-policy-framework-protect-children-move-displaced-face (2022).

  276. De Bruijn, B. The living conditions and well-being of refugees. Hum. Dev. Res. Pap. 25, (2009).

  277. Sverdlik, A. Ill-health and poverty: a literature review on health in informal settlements. Environ. Urban. 23, 123–155 (2011).

    Article  Google Scholar 

  278. Hunter, L. M. et al. Scales and sensitivities in climate vulnerability, displacement, and health. Popul. Environ. 43, 61–81 (2021).

    Article  Google Scholar 

  279. Altare, C. et al. Infectious disease epidemics in refugee camps: a retrospective analysis of UNHCR data (2009-2017). J. Glob. Health Rep. 3, e2019064 (2019).

    Article  Google Scholar 

  280. Shimakawa, Y., Camélique, O. & Ariyoshi, K. Outbreak of chickenpox in a refugee camp of northern Thailand. Confl. Health 4, 4 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Hsan, K., Naher, S., Gozal, D., Griffiths, M. D. & Furkan Siddique, Md. R. Varicella outbreak among the Rohingya refugees in Bangladesh: Lessons learned and potential prevention strategies. Travel Med. Infect. Dis. 31, 101465 (2019).

    Article  PubMed  Google Scholar 

  282. Ahmed, J. A. et al. Epidemiology of respiratory viral infections in two long-term refugee camps in Kenya, 2007-2010. BMC Infect. Dis. 12, 7 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Mohamed, G. A. et al. Etiology and incidence of viral acute respiratory infections among refugees aged 5 years and older in Hagadera Camp, Dadaab, Kenya. Am. J. Trop. Med. Hyg. 93, 1371–1376 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  284. WHO & CDC. Outbreak of Poliomyelitis—Somalia and Kenya, May 2013. Morb. Mortal. Wkly. Rep. 62, 484 (2013).

  285. Harvey, B. et al. Planning and implementing a targeted polio vaccination campaign for Somali mobile populations in Northeastern Kenya based on migration and settlement patterns. Ethn. Health 27, 817–832 (2022).

    Article  PubMed  Google Scholar 

  286. Kaic, B., Borcic, B., Ljubicic, M., Brkic, I. & Mihaljevic, I. Hepatitis A control in a refugee camp by active immunization. Vaccine 19, 3615–3619 (2001).

    Article  CAS  PubMed  Google Scholar 

  287. Hakim, M. S. et al. The global burden of hepatitis E outbreaks: a systematic review. Liver Int 37, 19–31 (2017).

    Article  PubMed  Google Scholar 

  288. Bagulo, H., Majekodunmi, A. O. & Welburn, S. C. Hepatitis E in Sub Saharan Africa – A significant emerging disease. One Health 11, 100186 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Ahmed, A., Elduma, A., Magboul, B., Higazi, T. & Ali, Y. The first outbreak of dengue fever in Greater Darfur, Western Sudan. Trop. Med. Infect. Dis 4, 43 (2019).

    Google Scholar 

  290. Bonner, P. C. et al. Poor housing quality increases risk of rodent infestation and Lassa Fever in Refugee Camps of Sierra Leone. Am. J. Trop. Med. Hyg. 77, 169–175 (2007).

    Article  PubMed  Google Scholar 

  291. Kouadio, I. K., Aljunid, S., Kamigaki, T., Hammad, K. & Oshitani, H. Infectious diseases following natural disasters: prevention and control measures. Expert Rev. Anti Infect. Ther. 10, 95–104 (2012).

    Article  PubMed  Google Scholar 

  292. Mipatrini, D., Stefanelli, P., Severoni, S. & Rezza, G. Vaccinations in migrants and refugees: a challenge for European health systems. A systematic review of current scientific evidence. Pathog. Glob. Health 111, 59–68 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Kusuma, Y. S., Kumari, R., Pandav, C. S. & Gupta, S. K. Migration and immunization: determinants of childhood immunization uptake among socioeconomically disadvantaged migrants in Delhi, India. Trop. Med. Int. Health 15, 1326–1332 (2010).

    Article  PubMed  Google Scholar 

  294. McMichael, C. Climate change-related migration and infectious disease. Virulence 6, 548–553 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  295. Wasserman, S., Tambyah, P. A. & Lim, P. L. Yellow fever cases in Asia: primed for an epidemic - ClinicalKey. Int. J. Infect. Dis. 48, 98–103 (2016).

  296. Sadarangani, S. P., Lim, P. L. & Vasoo, S. Infectious diseases and migrant worker health in Singapore: a receiving country’s perspective. J. Travel Med. 24, 1–9 (2017).

  297. Atif, M., Saqib, A., Ikram, R., Sarwar, M. R. & Scahill, S. The reasons why Pakistan might be at high risk of Crimean Congo haemorrhagic fever epidemic; a scoping review of the literature. Virol. J. 14, 63 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Zimmerman, C., Kiss, L. & Hossain, M. Migration and Health: a framework for 21st-century policy-making. PLOS Med 8, e1001034 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Wesolowski, A. et al. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl Acad. Sci. 112, 11887–11892 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  300. Dhesi, S., Isakjee, A. & Davies, T. Public health in the Calais refugee camp: environment, health and exclusion. Crit. Public Health 28, 140–152 (2018).

    Article  Google Scholar 

  301. Pottie, K. et al. Access to healthcare for the most vulnerable migrants: a humanitarian crisis. Confl. Health 9, 16 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  302. NOAA. Tropical Cyclone Freddy Breaks Records before Lashing Madagascar. National Environmental Satellite, Data, and Information Service https://www.nesdis.noaa.gov/news/tropical-cyclone-freddy-breaks-records-lashing-madagascar (2023).

  303. WHO Africa. Cyclone Freddy deepens health risks in worst-hit countries. WHO Regional Office for Africa https://www.afro.who.int/news/cyclone-freddy-deepens-health-risks-worst-hit-countries (2023).

  304. Africa Research Bulletin. Cyclone Freddy: Malawi and Mozambique. Afr. Res. Bull. Econ. Financ. Tech. Ser. 60, 24231 (2023).

  305. Chinele, J. Cyclone Freddy Collapses Malawi’s Health System, Washing Away Medicines And Patient Records - Health Policy Watch. Health Policy Watch https://healthpolicy-watch.news/cyclone-freddy-collapses-malawis-health-system-washing-away-medicines-and-patient-records/ (2023).

  306. Wong, J. C. Hospitals face critical shortage of IV bags due to Puerto Rico hurricane. The Guardian https://www.theguardian.com/us-news/2018/jan/10/hurricane-maria-puerto-rico-iv-bag-shortage-hospitals (2018).

  307. Richardson, E. T., Burkett, M. & Farmer, P. Health Effects of Climate Change. In Harrison’s Principles of Internal Medicine (eds. Loscalzo, J. et al.) (McGraw-Hill Education, 2022).

  308. Bendix, A. Surge of viruses leaves children’s hospitals scrambling to free up beds and find room for patients. NBC News https://www.nbcnews.com/health/health-news/virus-surge-childrens-hospitals-scrambling-rcna53891 (2022).

  309. Walter and Patricia Rodney Commission on Reparations. https://www.rodneycommission.org/ (2019).

  310. Ryan, S. J., Carlson, C. J., Mordecai, E. A. & Johnson, L. R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 13, e0007213 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Eugene T. Richardson and Smit Chitre are funded by a Harvard Center for African Studies Motsepe Presidential Research Accelerator grant; Smit Chitre is also funded by the Weatherhead Center for International Affairs Medium Faculty Grant.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in drafting the article and revising it critically for important intellectual content. Each author has approved the final version for publication.

Corresponding author

Correspondence to Mesfin Teklu Tessema.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

No patient consent was required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitre, S.D., Crews, C.M., Tessema, M.T. et al. The impact of anthropogenic climate change on pediatric viral diseases. Pediatr Res 95, 496–507 (2024). https://doi.org/10.1038/s41390-023-02929-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02929-z

This article is cited by

Search

Quick links