Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neonatal sepsis and cardiovascular dysfunction I: mechanisms and pathophysiology

Abstract

The highest incidence of sepsis across all age groups occurs in neonates leading to substantial mortality and morbidity. Cardiovascular dysfunction frequently complicates neonatal sepsis including biventricular systolic and/or diastolic dysfunction, vasoregulatory failure, and pulmonary arterial hypertension. The haemodynamic response in neonatal sepsis can be hyperdynamic or hypodynamic and the underlying pathophysiological mechanisms are heterogeneous. The diagnosis and definition of both neonatal sepsis and cardiovascular dysfunction complicating neonatal sepsis are challenging and not consensus-based. Future developments in neonatal sepsis management will be facilitated by common definitions and datasets especially in neonatal cardiovascular optimisation.

Impact

  • Cardiovascular dysfunction is common in neonatal sepsis but there is no consensus-based definition, making calculating the incidence and designing clinical trials challenging.

  • Neonatal cardiovascular dysfunction is related to the inflammatory response, which can directly target myocyte function and systemic haemodynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenesis of sepsis-induced cardiac dysfunction in a neonate.
Fig. 2: Vasoregulatory dysfunction in neonatal sepsis.

Similar content being viewed by others

References

  1. Reinhart, K. et al. Recognizing sepsis as a global health priority — a WHO resolution. N. Engl. J. Med. 377, 414–417 (2017).

    Article  PubMed  Google Scholar 

  2. Fleischmann-Struzek, C. et al. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir. Med. 6, 223–230 (2018).

    Article  PubMed  Google Scholar 

  3. Schlapbach, L. J. et al. Impact of sepsis on neurodevelopmental outcome in a Swiss national cohort of extremely premature infants. Pediatrics 128, e348–e357 (2011).

    Article  PubMed  Google Scholar 

  4. Hayes, R. et al. Neonatal sepsis definitions from randomised clinical trials. Pediatr. Res. 93, 1141–1148 (2023).

  5. Deshpande, S. et al. Pulmonary hypertension in late onset neonatal sepsis using functional echocardiography: a prospective study. J. Ultrasound 25, 233–239 (2022).

    Article  PubMed  Google Scholar 

  6. de Waal, K. & Evans, N. Hemodynamics in preterm infants with late-onset sepsis. J. Pediatr. 156, 918–922.e1 (2010).

    Article  PubMed  Google Scholar 

  7. Habimana, R. et al. Sepsis-induced cardiac dysfunction: a review of pathophysiology. Acute Crit. Care 35, 57–66 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Prusakowski, M. K. & Chen, A. P. Pediatric sepsis. Emerg. Med. Clin. North Am. 35, 123–138 (2017).

    Article  PubMed  Google Scholar 

  9. Gonçalves, L. F., Chaiworapongsa, T. & Romero, R. Intrauterine infection and prematurity. Ment. Retard. Dev. Disabil. Res. Rev. 8, 3–13 (2002).

    Article  PubMed  Google Scholar 

  10. Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315, 801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morin, L. et al. The current and future state of pediatric sepsis definitions: an international survey. Pediatrics 149, e2021052565 (2022).

    Article  PubMed  Google Scholar 

  12. Matics, T. J. & Sanchez-Pinto, L. N. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the Sepsis-3 definitions in critically ill children. JAMA Pediatr. 171, e172352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schlapbach, L. J., Straney, L., Bellomo, R., MacLaren, G. & Pilcher, D. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intensive Care Med. 44, 179–188 (2018).

    Article  PubMed  Google Scholar 

  14. Molloy, E. J. & Bearer, C. F. Paediatric and neonatal sepsis and inflammation. Pediatr. Res. 91, 267–269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molloy, E. J. et al. Neonatal sepsis: need for consensus definition, collaboration and core outcomes. Pediatr. Res. 88, 2–4 (2020).

    Article  PubMed  Google Scholar 

  16. Henry, C. J. et al. Neonatal sepsis: a systematic review of core outcomes from randomised clinical trials. Pediatr. Res. 91, 735–742 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. McGovern, M., Giannoni, E., Kuester, H., Turner, M. A., van den Hoogen, A. & Bliss, J. M. et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr. Res. 88, 14–26 (2020).

    Article  PubMed  Google Scholar 

  18. ELFIN Trial Investigators Group. Enteral lactoferrin supplementation for very preterm infants: a randomised placebo-controlled trial. Lancet 393, 423–433 (2019).

    Article  Google Scholar 

  19. The International Neonatal Immunotherapy Study (INIS) Collaborative Group. Treatment of neonatal sepsis with intravenous immune globulin. N. Engl. J. Med. 365, 1201–1211 (2011).

    Article  Google Scholar 

  20. Wynn, J. L. & Polin, R. A. A neonatal sequential organ failure assessment score predicts mortality to late-onset sepsis in preterm very low birth weight infants. Pediatr. Res. 88, 85–90 (2020).

    Article  PubMed  Google Scholar 

  21. Fleiss, N. et al. Evaluation of the neonatal sequential organ failure assessment and mortality risk in preterm infants with late-onset infection. JAMA Netw. Open 4, e2036518 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Aziz, K. B. et al. Maximum vasoactive-inotropic score and mortality in extremely premature, extremely low birth weight infants. J. Perinatol. 41, 2337–2344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kharrat, A. et al. Validity of the vasoactive-inotropic score in preterm neonates receiving cardioactive therapies. Early Hum. Dev. 173, 105657 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Demirhan, S., Topcuoglu, S., Karadag, N., Ozalkaya, E. & Karatekin, G. Vasoactive inotropic score as a predictor of mortality in neonatal septic shock. J. Trop. Pediatr. 68, fmac100 (2022).

    Article  PubMed  Google Scholar 

  25. Wynn, J. L. et al. Timing of multiorgan dysfunction among hospitalized infants with fatal fulminant sepsis. Am. J. Perinatol. 34, 633–639 (2017).

    Article  PubMed  Google Scholar 

  26. Giannoni, E. et al. Neonatal sepsis of early onset, and hospital-acquired and community-acquired late onset: a prospective population-based cohort study. J. Pediatr. 201, 106–114.e4 (2018).

    Article  PubMed  Google Scholar 

  27. Kermorvant-Duchemin, E., Laborie, S., Rabilloud, M., Lapillonne, A. & Claris, O. Outcome and prognostic factors in neonates with septic shock. Pediatr. Crit. Care Med. 9, 186–191 (2008).

    Article  PubMed  Google Scholar 

  28. Groeneveld, A. B., Nauta, J. J. & Thijs, L. G. Peripheral vascular resistance in septic shock: its relation to outcome. Intensive Care Med. 14, 141–147 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Ceneviva, G., Paschall, J. A., Maffei, F. & Carcillo, J. A. Hemodynamic support in fluid-refractory pediatric septic shock. Pediatrics 102, e19 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Pollack, M. M., Fields, A. I. & Ruttimann, U. E. Distributions of cardiopulmonary variables in pediatric survivors and nonsurvivors of septic shock. Crit. Care Med. 13, 454–459 (1985).

    Article  CAS  PubMed  Google Scholar 

  31. Mercier, J.-C., Beaufils, F., Hartmann, J.-F. & Azema, D. Hemodynamic patterns of meningococcal shock in children. Crit. Care Med. 16, 27–33 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. El-Khuffash, A. F. & McNamara, P. J. Neonatologist-performed functional echocardiography in the neonatal intensive care unit. Semin. Fetal Neonatal Med. 16, 50–60 (2011).

    Article  PubMed  Google Scholar 

  33. Cerritelli, F. et al. A review on the vagus nerve and autonomic nervous system during fetal development: searching for critical windows. Front. Neurosci. 15, 721605 (2021).

  34. Galland, B. C., Taylor, B. J., Bolton, D. P. G. & Sayers, R. M. Heart rate variability and cardiac reflexes in small for gestational age infants. J. Appl. Physiol. (1985) 100, 933–939 (2006).

    Article  PubMed  Google Scholar 

  35. Saini, S. S., Kumar, P. & Kumar, R. M. Hemodynamic changes in preterm neonates with septic shock: a prospective observational study. Pediatr. Crit. Care Med. 15, 443–450 (2014).

    Article  PubMed  Google Scholar 

  36. Deshpande, S., Suryawanshi, P., Chaudhary, N. & Maheshwari, R. Cardiac output in late onset neonatal sepsis. J. Clin. Diagn. Res. https://doi.org/10.7860/JCDR/2017/30312.10871 (2017).

  37. Yengkhom, R. et al. Point of care neonatal ultrasound in late-onset neonatal sepsis. J. Neonatol. 35, 59–63 (2021).

    Article  Google Scholar 

  38. Briegel, J., Jochum, M., Gippner-Steppert, C. & Thiel, M. Immunomodulation in septic shock: hydrocortisone differentially regulates cytokine responses. J. Am. Soc. Nephrol. 12, S70–S74 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Soliman, A. T. et al. Circulating adrenocorticotropic hormone (ACTH) and cortisol concentrations in normal, appropriate-for-gestational-age newborns versus those with sepsis and respiratory distress: cortisol response to low-dose and standard-dose ACTH tests. Metabolism 53, 209–214 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Ng, P. C. Adrenocortical insufficiency and refractory hypotension in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 101, F571–F576 (2016).

    Article  PubMed  Google Scholar 

  41. Scott, S. M. & Watterberg, K. L. Effect of gestational age, postnatal age, and illness on plasma cortisol concentrations in premature infants. Pediatr. Res. 37, 112–116 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Huysman, M. W. A., Hokken-Koelega, A. C. S., De Ridder, M. A. J. & Sauer, P. J. J. Adrenal function in sick very preterm infants. Pediatr. Res. 48, 629–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Seri, I., Tan, R. & Evans, J. Cardiovascular effects of hydrocortisone in preterm infants with pressor-resistant hypotension. Pediatrics 107, 1070–1074 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Ng, P. C. et al. A double-blind, randomized, controlled study of a “stress dose” of hydrocortisone for rescue treatment of refractory hypotension in preterm infants. Pediatrics 117, 367–375 (2006).

    Article  PubMed  Google Scholar 

  45. Higgins, S., Friedlich, P. & Seri, I. Hydrocortisone for hypotension and vasopressor dependence in preterm neonates: a meta-analysis. J. Perinatol. 30, 373–378 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Kharrat, A. & Jain, A. Hemodynamic dysfunction in neonatal sepsis. Pediatr. Res. 91, 413–424 (2022).

    Article  PubMed  Google Scholar 

  47. Meadow, W. L. & Meus, P. J. Unsuspected mesenteric hypoperfusion despite apparent hemodynamic recovery in the early phase of septic shock in piglets. Circ. Shock 15, 123–129 (1985).

    CAS  PubMed  Google Scholar 

  48. Meadow, W. L. & Meus, P. J. Early and late hemodynamic consequences of group B beta streptococcal sepsis in piglets: effects on systemic, pulmonary, and mesenteric circulations. Circ. Shock 19, 347–356 (1986).

    CAS  PubMed  Google Scholar 

  49. Davis, A. L. et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit. Care Med. 45, 1061–1093 (2017).

    Article  PubMed  Google Scholar 

  50. Truog, W. E., Gibson, R. L., Henderson, W. R. & Redding, G. J. Tumor necrosis factor-induced neonatal pulmonary hypertension: effects of dazmegrel pretreatment. Pediatr. Res. 27, 466–471 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Anderson, P. A. W. The heart and development. Semin. Perinatol. 20, 482–509 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Marijianowski, M. M. H., van der Loos, C. M., Mohrschladt, M. F. & Becker, A. E. The neonatal heart has a relatively high content of total collagen and type I collagen, a condition that may explain the less compliant state. J. Am. Coll. Cardiol. 23, 1204–1208 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Crepaz, R., Pitscheider, W., Radetti, G. & Gentili, L. Age-related variation in left ventricular myocardial contractile state expressed by the stress velocity relation. Pediatr. Cardiol. 19, 463–467 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Rowland, D. G. & Gutgesell, H. P. Noninvasive assessment of myocardial contractility, preload, and afterload in healthy newborn infants. Am. J. Cardiol. 75, 818–821 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Vrancken, S. L., van Heijst, A. F. & de Boode, W. P. Neonatal hemodynamics: from developmental physiology to comprehensive monitoring. Front. Pediatr. 6, 87 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rudolph, A. Myocardial growth before and after birth: clinical implications. Acta Paediatr. 89, 129–133 (2000).

    CAS  PubMed  Google Scholar 

  57. Smith, A. et al. Comparison of left ventricular rotational mechanics between term and extremely premature infants over the first week of age. Open Heart 8, e001458 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Singh, Y., Katheria, A. C. & Vora, F. Advances in diagnosis and management of hemodynamic instability in neonatal shock. Front. Pediatr. 6, 2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Drosatos, K. et al. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr. Heart Fail. Rep. 12, 130–140 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Poelaert, J., Declerck, C., Vogelaers, D., Colardyn, F. & Visser, C. A. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 23, 553–560 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Kimchi, A. et al. Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J. Am. Coll. Cardiol. 4, 945–951 (1984).

    Article  CAS  PubMed  Google Scholar 

  62. Parker, M. M. Profound but reversible myocardial depression in patients with septic shock. Ann. Intern. Med. 100, 483 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Bouhemad, B. et al. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit. Care Med. 36, 766–774 (2008).

    Article  PubMed  Google Scholar 

  64. L’Heureux, M., Sternberg, M., Brath, L., Turlington, J. & Kashiouris, M. G. Sepsis-induced cardiomyopathy: a comprehensive review. Curr. Cardiol. Rep. 22, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Vieillard-Baron, A. et al. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit. Care Med. 36, 1701–1706 (2008).

    Article  PubMed  Google Scholar 

  66. Beesley, S. J. et al. Septic cardiomyopathy. Crit. Care Med. 46, 625–634 (2018).

    Article  PubMed  Google Scholar 

  67. Vieillard-Baron, A., Prin, S., Chergui, K., Dubourg, O. & Jardin, F. Hemodynamic instability in sepsis: bedside assessment by Doppler echocardiography. Am. J. Respir. Crit. Care Med. 168, 1270–1276 (2003).

    Article  PubMed  Google Scholar 

  68. Torgersen, C. et al. Macroscopic postmortem findings in 235 surgical intensive care patients with sepsis. Anesth. Analg. 108, 1841–1847 (2009).

    Article  PubMed  Google Scholar 

  69. Parrillo, J. E. Septic shock in humans: advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann. Intern. Med. 113, 227 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Merx, M. W. & Weber, C. Sepsis and the heart. Circulation 116, 793–802 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Jain, A., Sankar, J., Anubhuti, A., Yadav, D. K. & Sankar, M. J. Prevalence and outcome of sepsis-induced myocardial dysfunction in children with ‘sepsis’ ‘with’ and ‘without shock’—a prospective observational study. J. Trop. Pediatr. 64, 501–509 (2018).

    Article  PubMed  Google Scholar 

  72. Yang, C. et al. NT-Pro-BNP and echocardiography for the early assessment of cardiovascular dysfunction in neonates with sepsis. Medicine (Baltimore) 101, e30439 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Alzahrani, A. K. Cardiac function affection in infants with neonatal sepsis. J. Clin. Trials 7, 329 (2017).

  74. Abdel-Hady, H. E., Matter, M. K. & El-Arman, M. M. Myocardial dysfunction in neonatal sepsis: a tissue Doppler imaging study. Pediatr. Crit. Care Med. 13, 318–323 (2012).

    Article  PubMed  Google Scholar 

  75. Fahmey, S. S., Hodeib, M., Refaat, K. & Mohammed, W. Evaluation of myocardial function in neonatal sepsis using tissue Doppler imaging. J. Matern. Fetal Neonatal Med. 33, 3752–3756 (2020).

    Article  PubMed  Google Scholar 

  76. Tomerak, R. H., El-Badawy, A. A., Hussein, G., Kamel, N. R. M. & Razak, A. R. A. Echocardiogram done early in neonatal sepsis: what does it add? J. Investig. Med. 60, 680–684 (2012).

    Article  PubMed  Google Scholar 

  77. Awny MM, Abd-Rab-Alrasol OT, Al Biltagi MA, Al-Asy HM, El-Mahdy HS. Cardiac functions by tissue Doppler and Speckle tracking echocardiography in neonatal sepsis and its correlation with sepsis markers and cardiac troponin-T. J. Pediatr. Neonatal Care 5, 11–12 (2016).

  78. Kumar, A. et al. Experimental human endotoxemia is associated with depression of load-independent contractility indices. Chest 126, 860–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Uchimido, R., Schmidt, E. P. & Shapiro, N. I. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit. Care 23, 16 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. De Backer, D., Orbegozo Cortes, D., Donadello, K. & Vincent, J.-L. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 5, 73–79 (2014).

    Article  PubMed  Google Scholar 

  81. Kumar, A., Kumar, A., Paladugu, B., Mensing, J. & Parrillo, J. E. Transforming growth factor-β1 blocks in vitro cardiac myocyte depression induced by tumor necrosis factor-α, interleukin-1β, and human septic shock serum. Crit. Care Med. 35, 358–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Bernardin, G., Strosberg, A. D., Bernard, A., Mattei, M. & Marullo, S. Beta-adrenergic receptor-dependent and -independent stimulation of adenylate cyclase is impaired during severe sepsis in humans. Intensive Care Med. 24, 1315–1322 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Jarkovska, D. et al. Cellular mechanisms of myocardial depression in porcine septic shock. Front. Physiol. 9, 726 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yu, P. et al. Myocardial collagen changes and edema in rats with hyperdynamic sepsis. Crit. Care Med. 25, 657–662 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Chagnon, F., Bentourkia, M., Lecomte, R., Lessard, M. & Lesur, O. Endotoxin-induced heart dysfunction in rats: assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit. Care Med. 34, 127–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Vasques-Nóvoa, F. et al. Myocardial edema: an overlooked mechanism of septic cardiomyopathy? Shock 53, 616–619 (2020).

    Article  PubMed  Google Scholar 

  87. Comstock, K. L. et al. LPS-induced TNF-alpha release from and apoptosis in rat cardiomyocytes: obligatory role for CD14 in mediating the LPS response. J. Mol. Cell. Cardiol. 30, 2761–2775 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Carlson, D. L., Willis, M. S., White, D. J., Horton, J. W. & Giroir, B. P. Tumor necrosis factor-α-induced caspase activation mediates endotoxin-related cardiac dysfunction. Crit. Care Med. 33, 1021–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Landry, D. W. & Oliver, J. A. The pathogenesis of vasodilatory shock. N. Engl. J. Med. 345, 588–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Kakihana, Y., Ito, T., Nakahara, M., Yamaguchi, K. & Yasuda, T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J. Intensive Care 4, 22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. O’Hare, F. M., William Watson, R. & Molloy, E. J. Toll-like receptors in neonatal sepsis. Acta Paediatr. 102, 572–578 (2013).

    Article  PubMed  Google Scholar 

  92. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Bianchi, M. E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Adib-Conquy, M. & Cavaillon, J.-M. Réponse inflammatoire et anti-inflammatoire de l’hôte au cours du sepsis. Pathol. Biol. 60, 306–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Soriano, F. G., Lorigados, C. B., Pacher, P. & Szabó, C. Effects of a potent peroxynitrite decomposition catalyst in murine models of endotoxemia and sepsis. Shock 35, 560–566 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Greer, J. Pathophysiology of cardiovascular dysfunction in sepsis. BJA Educ. 15, 316–321 (2015).

    Article  Google Scholar 

  97. Schultz, C. et al. Immature anti-inflammatory response in neonates. Clin. Exp. Immunol. 135, 130–136 (2003).

    Article  Google Scholar 

  98. Schultz, C. et al. Enhanced interleukin-6 and interleukin-8 synthesis in term and preterm infants. Pediatr. Res. 51, 317–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Kollmann, T. R., Kampmann, B., Mazmanian, S. K., Marchant, A. & Levy, O. Protecting the newborn and young infant from infectious diseases: lessons from immune ontogeny. Immunity 46, 350–363 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Kollmann, T. R., Levy, O., Montgomery, R. R. & Goriely, S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity 37, 771–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Khadour, F. H. et al. Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am. J. Physiol. Heart Circ. Physiol. 283, H1108–H1115 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Hickson-Bick, D. L. M., Jones, C. & Buja, L. M. The response of neonatal rat ventricular myocytes to lipopolysaccharide-induced stress. Shock 25, 546–552 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Hobai, I. A., Edgecomb, J., LaBarge, K. & Colucci, W. S. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 43, 3–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, M. et al. Clinical characteristics of severe neonatal enterovirus infection: a systematic review. BMC Pediatr. 21, 127 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ronchi, A., Doern, C., Brock, E., Pugni, L. & Sánchez, P. J. Neonatal adenoviral infection: a seventeen year experience and review of the literature. J. Pediatr. 164, 529–535.e4 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Pawar, R. et al. Neonatal Multisystem Inflammatory Syndrome (MIS-N) associated with prenatal maternal SARS-CoV-2: a case series. Children (Basel). 8, 572 (2021).

    PubMed  PubMed Central  Google Scholar 

  107. DiGiulio, D. B. et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 64, 38–57 (2010).

  108. Gotsch, F. et al. The fetal inflammatory response syndrome. Clin. Obstet. Gynecol. 50, 652–683 (2007).

    Article  PubMed  Google Scholar 

  109. Kim, C. J. et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 213, S29–S52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kalikkot Thekkeveedu, R., Guaman, M. C. & Shivanna, B. Bronchopulmonary dysplasia: a review of pathogenesis and pathophysiology. Respir. Med. 132, 170–177 (2017).

    Article  PubMed  Google Scholar 

  111. Perniciaro, S. et al. Early- and late-respiratory outcome in very low birth weight with or without intrauterine inflammation. Am. J. Perinatol. 37, S76–S83 (2020).

    Article  PubMed  Google Scholar 

  112. Resch, B. et al. Risk factors and determinants of neurodevelopmental outcome in cystic periventricular leucomalacia. Eur. J. Pediatr. 159, 663–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Grether, J. K. & Nelson, K. B. Maternal infection and cerebral palsy in infants of normal birth weight. JAMA 278, 207–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Yoon, B. H. et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am. J. Obstet. Gynecol. 177, 19–26 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Yanowitz, T. D. et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr. Res. 51, 310–316 (2002).

    Article  PubMed  Google Scholar 

  116. Rounioja, S. Intra-amniotic lipopolysaccharide leads to fetal cardiac dysfunction: a mouse model for fetal inflammatory response. Cardiovasc. Res. 60, 156–164 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Durosier, L. D. et al. Does heart rate variability reflect the systemic inflammatory response in a fetal sheep model of lipopolysaccharide-induced sepsis? Physiol. Meas. 36, 2089–2102 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Stone, M. L. et al. Abnormal heart rate characteristics before clinical diagnosis of necrotizing enterocolitis. J. Perinatol. 33, 847–850 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Griffin, M. P. & Moorman, J. R. Toward the early diagnosis of neonatal sepsis and sepsis-like illness using novel heart rate analysis. Pediatrics 107, 97–104 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Griffin, M. P. et al. Heart rate characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics 116, 1070–1074 (2005).

    Article  PubMed  Google Scholar 

  121. Weitkamp, J.-H. et al. Meningitis, urinary tract, and bloodstream infections in very low birth weight infants enrolled in a heart rate characteristics monitoring trial. Pediatr. Res. 87, 1226–1230 (2020).

    Article  PubMed  Google Scholar 

  122. Kyozuka, H., Yasuda, S., Hiraiwa, T., Nomura, Y. & Fujimori, K. The change of fetal heart rate short-term variability during the course of histological chorioamnionitis in fetal sheep. Eur. J. Obstet. Gynecol. Reprod. Biol. 228, 32–37 (2018).

    Article  PubMed  Google Scholar 

  123. Garzoni, L., Faure, C. & Frasch, M. G. Fetal cholinergic anti-inflammatory pathway and necrotizing enterocolitis: the brain-gut connection begins in utero. Front. Integr. Neurosci. 7, 57 (2013).

  124. Romero, R. et al. Fetal cardiac dysfunction in preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med. 16, 146–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Letti Müller, A. L. et al. Tei index to assess fetal cardiac performance in fetuses at risk for fetal inflammatory response syndrome. Ultrasound Obstet. Gynecol. 36, 26–31 (2010).

    Article  PubMed  Google Scholar 

  126. Kelleher, M. A. et al. Maternal azithromycin therapy for Ureaplasma parvum intraamniotic infection improves fetal hemodynamics in a nonhuman primate model. Am. J. Obstet. Gynecol. 223, 578.e1–578.e11 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

S.M.D and E.J.M: manuscript design, manuscript draft. All authors contributed to editing, including revising the paper for important intellectual content and approved the final draft. S.L: created figures.

Corresponding author

Correspondence to Eleanor J. Molloy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duignan, S.M., Lakshminrusimha, S., Armstrong, K. et al. Neonatal sepsis and cardiovascular dysfunction I: mechanisms and pathophysiology. Pediatr Res 95, 1207–1216 (2024). https://doi.org/10.1038/s41390-023-02926-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02926-2

Search

Quick links