Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Total liquid ventilation in an ovine model of extreme prematurity: a randomized study

Abstract

Background

This study aimed at comparing cardiorespiratory stability during total liquid ventilation (TLV)—prior to lung aeration—with conventional mechanical ventilation (CMV) in extremely preterm lambs during the first 6 h of life.

Methods

23 lambs (11 females) were born by c-section at 118–120 days of gestational age (term = 147 days) to receive 6 h of TLV or CMV from birth. Lung samples were collected for RNA and histology analyses.

Results

The lambs under TLV had higher and more stable arterial oxygen saturation (p = 0.001) and cerebral tissue oxygenation (p = 0.02) than the lambs in the CMV group in the first 10 min of transition to extrauterine life. Although histological assessment of the lungs was similar between the groups, a significant upregulation of IL-1a, IL-6 and IL-8 RNA in the lungs was observed after TLV.

Conclusions

Total liquid ventilation allowed for remarkably stable transition to extrauterine life in an extremely preterm lamb model. Refinement of our TLV prototype and ventilation algorithms is underway to address specific challenges in this population, such as minimizing tracheal deformation during the active expiration.

Impact

  • Total liquid ventilation allows for remarkably stable transition to extrauterine life in an extremely preterm lamb model.

  • Total liquid ventilation is systematically achievable over the first 6 h of life in the extremely premature lamb model.

  • This study provides additional incentive to pursue further investigation of total liquid ventilation as a transition tool for the most extreme preterm neonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peripheral oxygen saturation, cerebral tissue oxygenation and heart rate throughout the first 10 min following umbilical cord clamping.
Fig. 2: Latent class modeling of the cerebral tissue oxygenation.
Fig. 3: Lung histological inflammation score.
Fig. 4: Relative RNA expression of several inflammatory biomarkers in the lungs.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Lee, C. D., Nelin, L. & Foglia, E. E. Neonatal resuscitation in 22-week pregnancies. N. Engl. J. Med. 386, 391–393 (2022).

    PubMed  Google Scholar 

  2. Kumar, N., Akangire, G., Sullivan, B., Fairchild, K. & Sampath, V. Continuous vital sign analysis for predicting and preventing neonatal diseases in the twenty-first century: big data to the forefront. Pediatr. Res. 87, 210–220 (2020).

    PubMed  Google Scholar 

  3. Lara-Cantón, I. et al. Oxygen supplementation during preterm stabilization and the relevance of the first 5 min after birth. Front. Pediatr. 8, 12 (2020).

    PubMed  PubMed Central  Google Scholar 

  4. Ballabh, P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr. Res. 67, 1–8 (2010).

    PubMed  PubMed Central  Google Scholar 

  5. Younge, N. et al. Survival and neurodevelopmental outcomes among periviable infants. N. Engl. J. Med 376, 617–628 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Stritzke, A. et al. Use and timing of surfactant administration: impact on neonatal outcomes in extremely low gestational age infants born in Canadian Neonatal Intensive Care Units. J. Matern Fetal Neonatal Med. 31, 2862–2869 (2018).

    CAS  PubMed  Google Scholar 

  7. Sindelar, R., Nakanishi, H., Stanford, A. H., Colaizy, T. T. & Klein, J. M. Respiratory management for extremely premature infants born at 22 to 23 weeks of gestation in proactive centers in Sweden, Japan, and USA. Semin. Perinatol. 46, 151540 (2022).

    PubMed  Google Scholar 

  8. Weisz, D. E. et al. Duration of and trends in respiratory support among extremely preterm infants. Arch. Dis. Child Fetal Neonatal Ed. 106, 286–291 (2021).

    PubMed  Google Scholar 

  9. Hirata, K. et al. Longitudinal impairment of lung function in school-age children with extremely low birth weights. Pediatr. Pulmonol. 52, 779–786 (2017).

    PubMed  Google Scholar 

  10. Mushtaq, A. Progress needed in bronchopulmonary dysplasia. Lancet Respir. Med. 7, 300–301 (2019).

    PubMed  Google Scholar 

  11. Shukla, V. V. et al. Hospital and neurodevelopmental outcomes in nano-preterm infants receiving invasive vs noninvasive ventilation at birth. JAMA Netw. Open 5, e2229105 (2022).

    PubMed  PubMed Central  Google Scholar 

  12. Foust, R. 3rd et al. Liquid assisted ventilation: an alternative ventilatory strategy for acute meconium aspiration injury. Pediatr. Pulmonol. 21, 316–322 (1996).

    PubMed  Google Scholar 

  13. Sarkar, S., Paswan, A. & Prakas, S. Liquid ventilation. Anesth. Essays Res. 8, 277–282 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Klingstedt, C. et al. The influence of body position and differential ventilation on lung dimensions and atelectasis formation in anaesthetized man. Acta Anaesthesiol. Scand. 34, 315–322 (1990).

    CAS  PubMed  Google Scholar 

  15. Stavis, R. L., Wolfson, M. R., Cox, C., Kechner, N. & Shaffer, T. H. Physiologic, biochemical, and histologic correlates associated with tidal liquid ventilation. Pediatr. Res. 43, 132–138 (1998).

    CAS  PubMed  Google Scholar 

  16. Cox, C., Stavis, R. L., Wolfson, M. R. & Shaffer, T. H. Long-term tidal liquid ventilation in premature lambs: physiologic, biochemical and histological correlates. Biol. Neonate 84, 232–242 (2003).

    PubMed  Google Scholar 

  17. Degraeuwe, P. L. et al. Conventional gas ventilation, liquid-assisted high-frequency oscillatory ventilation, and tidal liquid ventilation in surfactant-treated preterm lambs. Int. J. Artif. Organs 23, 754–764 (2000).

    CAS  PubMed  Google Scholar 

  18. Jackson, J. C., Standaert, T. A., Truog, W. E. & Hodson, W. A. Full-tidal liquid ventilation with perfluorocarbon for prevention of lung injury in newborn non-human primates. Artif. Cells Blood Substit. Immob. Biotechnol. 22, 1121–1132 (1994).

    CAS  Google Scholar 

  19. Wolfson, M. R., Greenspan, J. S., Deoras, K. S., Rubenstein, S. D. & Shaffer, T. H. Comparison of gas and liquid ventilation: clinical, physiological, and histological correlates. J. Appl. Physiol. (1985) 72, 1024–1031 (1992).

    CAS  PubMed  Google Scholar 

  20. Curtis, S. E., Fuhrman, B. P., Howland, D. F., DeFrancisis, M. & Motoyama, E. K. Cardiac output during liquid (perfluorocarbon) breathing in newborn piglets. Crit. Care Med. 19, 225–230 (1991).

    CAS  PubMed  Google Scholar 

  21. Bagnoli, P., Acocella, F., Di Giancamillo, M., Fumero, R. & Costantino, M. L. Finite element analysis of the mechanical behavior of preterm lamb tracheal bifurcation during total liquid ventilation. J. Biomech. 46, 462–469 (2013).

    PubMed  Google Scholar 

  22. Robert, R., Micheau, P. & Walti, H. A supervisor for volume-controlled tidal liquid ventilator using independent piston pumps. Biomed. Signal Process. Control 2, 267–274 (2007).

    Google Scholar 

  23. Sage, M. et al. Assessing the impacts of total liquid ventilation on left ventricular diastolic function in a model of neonatal respiratory distress syndrome. PloS One 13, e0191885 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Sage, M. et al. Effect of low versus high tidal-volume total liquid ventilation on pulmonary inflammation. Front. Physiol. 11, 603 (2020).

    PubMed  PubMed Central  Google Scholar 

  25. See, W. et al. Air distribution within the lungs after total liquid ventilation in a neonatal ovine model. Respir. Physiol. Neurobiol. 290, 103666 (2021).

    PubMed  Google Scholar 

  26. Morin, C. et al. Conventional vs high-frequency ventilation for weaning from total liquid ventilation in lambs. Respir. Physiol. Neurobiol. 299, 103867 (2022).

    CAS  PubMed  ADS  Google Scholar 

  27. Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. J. Physiol. 598, 3793–3801 (2020).

    CAS  PubMed  Google Scholar 

  28. Skoll, A. et al. No. 364-antenatal corticosteroid therapy for improving neonatal outcomes. J. Obstet. Gynaecol. Can. 40, 1219–1239 (2018).

    PubMed  Google Scholar 

  29. Mychaliska, G. B. et al. Operating on placental support: the ex utero intrapartum treatment procedure. J. Pediatr. Surg. 32, 227–230 (1997). discussion 230-221.

    CAS  PubMed  Google Scholar 

  30. El-Sabbagh, A. M. et al. Cerebral oxygenation of premature lambs supported by an artificial placenta. ASAIO J. 64, 552–556 (2018).

    PubMed  PubMed Central  Google Scholar 

  31. Robert, R., Micheau, P. & Walti, H. Optimal expiratory volume profile in tidal liquid ventilation under steady state conditions, based on a symmetrical lung model. ASAIO J. 55, 63–72 (2009).

    PubMed  Google Scholar 

  32. Sage, M. et al. Perflubron distribution during transition from gas to total liquid ventilation. Front. Physiol. 9, 1723 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Hillman, N. H. et al. Airway injury from initiating ventilation in preterm sheep. Pediatr. Res. 67, 60–65 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Harijith, A. K. & Bhandari, V. in Bronchopulmonary Dysplasia (ed V. Bhandari) p. 3–26 (Springer International Publishing, 2016).

  35. Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).

    CAS  PubMed  Google Scholar 

  36. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).

  37. Nagin, D. S. Analyzing developmental trajectories: a semiparametric, group-based approach. Psychol. Methods 4, 139–157 (1999).

    Google Scholar 

  38. Shaffer, T. H., Tran, N., Bhutani, V. K. & Sivieri, E. M. Cardiopulmonary function in very preterm lambs during liquid ventilation. Pediatr. Res. 17, 680–684 (1983).

    CAS  PubMed  Google Scholar 

  39. Samson, N., Fortin-Pellerin, E. & Praud, J. P. The contribution of ovine models to perinatal respiratory physiology. Front Biosci. (Landmark Ed.) 23, 1195–1219 (2018).

    CAS  PubMed  Google Scholar 

  40. Albertine, K. H. Utility of large-animal models of BPD: chronically ventilated preterm lambs. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L983–L1001 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Oei, J. L. et al. Outcomes of oxygen saturation targeting during delivery room stabilisation of preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 103, F446–F454 (2018).

    PubMed  Google Scholar 

  42. Bagnoli, P. et al. Effect of repeated induced airway collapse during total liquid ventilation. ASAIO J. 53, 549–555 (2007).

    PubMed  Google Scholar 

  43. Ancora, G. et al. Evidence-based clinical guidelines on analgesia and sedation in newborn infants undergoing assisted ventilation and endotracheal intubation. Acta Paediatr. 108, 208–217 (2019).

    PubMed  Google Scholar 

  44. McPherson, C., Ortinau, C. M. & Vesoulis, Z. Practical approaches to sedation and analgesia in the newborn. J. Perinatol. 41, 383–395 (2021).

    PubMed  Google Scholar 

  45. McDonagh, P. et al. Perflubron emulsion reduces inflammation during extracorporeal circulation. J. Surg. Res. 99, 7–16 (2001).

    CAS  PubMed  Google Scholar 

  46. Kaisers, U., Kelly, K. P. & Busch, T. Liquid ventilation. Br. J. Anaesth. 91, 143–151 (2003).

    CAS  PubMed  Google Scholar 

  47. Jiang, L., Feng, H., Chen, X., Liang, K. & Ni, C. Low tidal volume reduces lung inflammation induced by liquid ventilation in piglets with severe lung injury. Artif. Organs 41, 440–445 (2017).

    CAS  PubMed  Google Scholar 

  48. Kohlhauer, M. et al. A new paradigm for lung-conservative total liquid ventilation. EBioMedicine 52, 102365 (2020).

    PubMed  Google Scholar 

  49. Eichenwald, C., Dysart, K., Zhang, H. & Fox, W. Neonatal partial liquid ventilation for the treatment and prevention of bronchopulmonary dysplasia. NeoReviews 21, e238–e248 (2020).

    PubMed  Google Scholar 

  50. Micheau, P. et al. Liquid ventilator and method to induce tidal liquid ventilation and/or hyperthermia, filed April 12, 2019 in Canada, (Patent application PCT/CA2019/050450).

Download references

Acknowledgements

The authors would like to thank Samuel Lemaire-Paquette from the biostatistics department of the Université de Sherbrooke Hospital Research Center for help with the statistical analysis and review of the manuscript.

Funding

This research was funded by the Center de recherche du CHUS, Foundation of Stars, Quebec Respiratory Health Research Network, Fonds de Recherche en Santé du Québec, the Natural Sciences and Engineering Research Council of Canada, and the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Contributions

Substantial contributions to the conception and design, acquisition of data, or analysis and interpretation of data: C.M., É.S., J.P.P., B.C., P.L., W.S., M.S., R.I., C.N., N.S., S.M., S.T., P.M., and E.F.P. Drafting the article or revising it critically for important intellectual content: C.M., E.F.P., J.P.P., and P.M. Final approval of the version to be published: all authors.

Corresponding author

Correspondence to Étienne Fortin-Pellerin.

Ethics declarations

Competing interests

P.M. declares to be a co-inventor of patents on liquid ventilation (US patents #7,726,311 B2; US patent 2016/0,271,348 A1; US patent 2021/0,077,759 A1; European patent 21305533.8). P.M. is a shareholder of a start-up company dedicated to the commercialization of a liquid ventilator for ultra-fast hypothermia induction after cardiac arrest (Orixha). The remaining authors declare no conflicts of interest of any sort.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morin, C., Simard, É., See, W. et al. Total liquid ventilation in an ovine model of extreme prematurity: a randomized study. Pediatr Res 95, 974–980 (2024). https://doi.org/10.1038/s41390-023-02841-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02841-6

Search

Quick links