Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

The association of placental pathology and neurodevelopmental outcomes in patients with neonatal encephalopathy

Abstract

Background

Studies conflict on how acute versus chronic placental pathology impacts outcomes after neonatal encephalopathy from presumed hypoxic-ischemic encephalopathy (HIE). We examine how outcomes after presumed HIE vary by placental pathology categories.

Methods

We performed retrospective chart review for neonates with presumed HIE, regardless of severity, focusing on 50 triads for whom placental specimens were available for re-review. Placentas were categorized as having only acute, any chronic, or no lesions. Primary outcomes included in-hospital morbidity/mortality and long-term neurodevelopmental symptoms. Secondary outcomes assessed neonatal MRI and EEG.

Results

Demographics did not differ between groups. Forty-seven neonates were treated with therapeutic hypothermia. Placental acuity category was not associated with primary or secondary outcomes, but clinical and/or histopathological chorioamnionitis was associated with abnormal EEG background and post-neonatal epilepsy (16.7%, n = 3 with chorioamnionitis versus 0%, n = 0 without chorioamnionitis, p = 0.04).

Conclusions

When grouped by acute, chronic, or absent placental lesions, we observed no association with in-hospital, neurodevelopmental, MRI, or EEG outcomes. When reanalyzed by the presence of chorioamnionitis, we found that chorioamnionitis appeared to be associated with a higher risk of EEG alterations and post-neonatal epilepsy. Despite our limited sample size, our results emphasize the critical role of placental examination for neuroprognostication in presumed HIE.

Impact

  • Neonatal encephalopathy presumed to result from impaired fetal cerebral oxygenation or blood flow is called hypoxic ischemic encephalopathy (HIE).

  • Prior studies link placental pathology to various outcomes after HIE but disagree on the impact of acute versus chronic pathology.

  • Our study determines that neurodevelopmental outcomes, in-hospital outcomes, injury on MRI, and EEG findings in patients with HIE are not differentially associated with acute versus chronic placental pathology.

  • Chorioamnionitis is associated with an increased risk of abnormal EEG patterns and post-neonatal epilepsy.

  • Histopathologic chorioamnionitis without clinical symptoms is common in HIE, emphasizing the crucial role of placental pathology for neuroprognostication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Short-term, long-term, imaging findings, and EEG findings by placental pathology.
Fig. 2: EEG patterns and post-neonatal epilepsy in the presence or absence of chorioamnionitis.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Acun, C. et al. Trends of neonatal hypoxic-ischemic encephalopathy prevalence and associated risk factors in the United States, 2010 to 2018. Am. J. Obstet. Gynecol. S0002-9378(22)00443-4 (2022).

  2. Badawi, N. et al. Intrapartum risk factors for newborn encephalopathy: the Western Australian case-control study. BMJ 317, 1554–1558 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kurinczuk, J. J., White-Koning, M. & Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 86, 329–338 (2010).

    Article  PubMed  Google Scholar 

  4. Parker, S. J., Kuzniewicz, M., Niki, H. & Wu, Y. W. Antenatal and intrapartum risk factors for hypoxic-ischemic encephalopathy in a Us birth cohort. J. Pediatr. 203, 163–169 (2018).

    Article  PubMed  Google Scholar 

  5. Russ, J. B., Simmons, R. & Glass, H. C. Neonatal encephalopathy: beyond hypoxic-ischemic encephalopathy. Neoreviews 22, e148–e162 (2021).

    Article  PubMed  Google Scholar 

  6. Fox, A., Doyle, E., Geary, M. & Hayes, B. Placental pathology and neonatal encephalopathy. Int. J. Gynaecol. Obstet. 160, 22–27 (2022).

  7. Martinez-Biarge, M., Diez-Sebastian, J., Wusthoff, C. J., Mercuri, E. & Cowan, F. M. Antepartum and intrapartum factors preceding neonatal hypoxic-ischemic encephalopathy. Pediatrics 132, e952–e959 (2013).

    Article  PubMed  Google Scholar 

  8. Nasiell, J., Papadogiannakis, N., Lof, E., Elofsson, F. & Hallberg, B. Hypoxic ischemic encephalopathy in newborns linked to placental and umbilical cord abnormalities. J. Matern. Fetal Neonatal. Med. 29, 721–726 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Nelson, K. B. et al. Antecedents of neonatal encephalopathy in the vermont oxford network encephalopathy registry. Pediatrics 130, 878–886 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Penn, A. A. et al. Placental contribution to neonatal encephalopathy. Semin. Fetal. Neonatal. Med. 26, 101276 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Redline, R. W. & O'Riordan, M. A. Placental lesions associated with cerebral palsy and neurologic impairment following term birth. Arch. Pathol. Lab. Med. 124, 1785–1791 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Roescher, A. M., Timmer, A., Erwich, J. J. & Bos, A. F. Placental pathology, perinatal death, neonatal outcome, and neurological development: a systematic review. PLoS One 9, e89419 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bingham, A., Gundogan, F., Rand, K. & Laptook, A. R. Placental findings among newborns with hypoxic ischemic encephalopathy. J. Perinatol. 39, 563–570 (2019).

    Article  PubMed  Google Scholar 

  14. Chang, T. et al. Neonatal encephalopathy, sentinel events, and the placenta. J. Neonatal-Perinat. Med. 5, 41–48 (2012).

    Article  Google Scholar 

  15. McDonald, D. G. et al. Placental fetal thrombotic vasculopathy is associated with neonatal encephalopathy. Hum. Pathol. 35, 875–880 (2004).

    Article  PubMed  Google Scholar 

  16. Espinoza, M. L. et al. Placental pathology as a marker of brain injury in infants with hypoxic ischemic encephalopathy. Early Hum. Dev. 174, 105683 (2022).

    Article  PubMed  Google Scholar 

  17. Johnson, C. T., Burd, I., Raghunathan, R., Northington, F. J. & Graham, E. M. Perinatal inflammation/infection and its association with correction of metabolic acidosis in hypoxic-ischemic encephalopathy. J. Perinatol. 36, 448–452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mir, I. N. et al. Placental pathology is associated with severity of neonatal encephalopathy and adverse developmental outcomes following hypothermia. Am. J. Obstet. Gynecol. 213, 849 e841–847 (2015).

    Article  Google Scholar 

  19. Harteman, J. C. et al. Placental pathology in full-term infants with hypoxic-ischemic neonatal encephalopathy and association with magnetic resonance imaging pattern of brain injury. J. Pediatr. 163, 968–995.e962 (2013).

    Article  PubMed  Google Scholar 

  20. Hellwig, L. et al. Association of perinatal sentinel events, placental pathology and cerebral mri in neonates with hypoxic-ischemic encephalopathy receiving therapeutic hypothermia. J. Perinatol. 42, 885–891 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kovatis, K. Z. et al. Relationship between placental weight and placental pathology with MRI findings in mild to moderate hypoxic ischemic encephalopathy. Cureus 14, e24854 (2022).

    PubMed  PubMed Central  Google Scholar 

  22. Wintermark, P., Boyd, T., Gregas, M. C., Labrecque, M. & Hansen, A. Placental pathology in asphyxiated newborns meeting the criteria for therapeutic hypothermia. Am. J. Obstet. Gynecol. 203, 579.e571–579 (2010).

    Article  Google Scholar 

  23. Wu, Y. W. et al. Placental Pathology and Neonatal Brain Mri in a Randomized Trial of Erythropoietin for Hypoxic-Ischemic Encephalopathy. Pediatr. Res. 87, 879–884 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Benz, L. D. et al. Placental findings are not associated with neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy - an 11-year single-center experience. J. Perinat. Med. 50, 343–350 (2022).

    Article  PubMed  Google Scholar 

  25. Frank, C. M. et al. Placental pathology and outcome after perinatal asphyxia and therapeutic hypothermia. J. Perinatol. 36, 977–984 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Khong, T. Y. et al. Sampling and definitions of placental lesions: amsterdam placental workshop group consensus statement. Arch. Pathol. Lab. Med. 140, 698–713 (2016).

    Article  PubMed  Google Scholar 

  27. Redline, R. W. Classification of placental lesions. Am. J. Obstet. Gynecol. 213, S21–S28 (2015).

    Article  PubMed  Google Scholar 

  28. Chalak, L. et al. Acute and chronic placental abnormalities in a multicenter cohort of newborn infants with hypoxic-ischemic encephalopathy. J. Pediatr. 237, 190–196 (2021).

    Article  PubMed  Google Scholar 

  29. Almog, B. et al. Placenta weight percentile curves for singleton and twins deliveries. Placenta 32, 58–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Vik, T. et al. The placenta in neonatal encephalopathy: a case-control study. J. Pediatr. 20277–85.e73 (2018).

    Google Scholar 

  31. Natarajan, G., Pappas, A. & Shankaran, S. Outcomes in childhood following therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy (Hie). Semin. Perinatol. 40, 549–555 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Azzopardi, D. et al. Effects of hypothermia for perinatal asphyxia on childhood outcomes. N. Engl. J. Med 371, 140–149 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Jacobs, S. E. et al. Whole-body hypothermia for term and near-term newborns with hypoxic-ischemic encephalopathy: a randomized controlled trial. Arch. Pediatr. Adolesc. Med. 165, 692–700 (2011).

    Article  PubMed  Google Scholar 

  34. Shankaran, S. et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N. Engl. J. Med. 353, 1574–1584 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, B. L. et al. Long-term cognitive outcomes in term newborns with watershed injury caused by neonatal encephalopathy. Pediatr. Res. 92, 505–512 (2022).

    Article  PubMed  Google Scholar 

  36. Lee, B. L. & Glass, H. C. Cognitive outcomes in late childhood and adolescence of neonatal hypoxic-ischemic encephalopathy. Clin. Exp. Pediatr. 64, 608–618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Finder, M. et al. Two-year neurodevelopmental outcomes after mild hypoxic ischemic encephalopathy in the era of therapeutic hypothermia. JAMA Pediatr. 174, 48–55 (2020).

    Article  PubMed  Google Scholar 

  38. Grossmann, K. R., Westblad, M. E., Blennow, M. & Lindstrom, K. Outcome at early school age and adolescence after hypothermia-treated hypoxic-ischemic encephalopathy: an observational, population-based study. Arch. Dis. Child Fetal Neonatal. Ed. 108, 295–301 (2023).

    Article  Google Scholar 

  39. Scher, M. S. "The first thousand days" define a fetal/neonatal neurology program. Front. Pediatr. 9, 683138 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Scher, M. S., Trucco, G. S., Beggarly, M. E., Steppe, D. A. & Macpherson, T. A. Neonates with electrically confirmed seizures and possible placental associations. Pediatr. Neurol. 19, 37–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Hayes, B. C. et al. The placenta in infants >36 weeks gestation with neonatal encephalopathy: a case control study. Arch. Dis. Child Fetal Neonatal. Ed. 98, F233–F239 (2013).

    Article  PubMed  Google Scholar 

  42. Strand, K. M., Andersen, G. L., Haavaldsen, C., Vik, T. & Eskild, A. Association of placental weight with cerebral palsy: population-based cohort study in Norway. BJOG 123, 2131–2138 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Danko, I., Tanko, A., Kelemen, E. & Cserni, G. Placental pathology of preeclampsia from a clinical point of view: correlation between placental histopathology, clinical signs of preeclampsia and neonatal outcome. J. Obstet. Gynaecol. Res. 49, 1471–1480 (2023).

    Article  PubMed  Google Scholar 

  44. Helfrich, B. B. et al. Corrigendum to ‘maternal vascular malperfusion of the placental bed associated with hypertensive disorders in the boston birth cohort’ [Placenta 52 (2017) 106–113]. Placenta 86, 52–53 (2019).

  45. Bear, J. J. & Wu, Y. W. Maternal infections during pregnancy and cerebral palsy in the child. Pediatr. Neurol. 57, 74–79 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu, Y. W. et al. Chorioamnionitis and cerebral palsy in term and near-term infants. JAMA 290, 2677–2684 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, Y. W. & Colford, J. M. Jr. Chorioamnionitis as a risk factor for cerebral palsy: a meta-analysis. JAMA 284, 1417–1424 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Z., Tang, Z., Li, J. & Yang, Y. Effects of placental inflammation on neonatal outcome in preterm infants. Pediatr. Neonatol. 55, 35–40 (2014).

    Article  PubMed  Google Scholar 

  49. Redline, R. W. Villitis of unknown etiology: noninfectious chronic villitis in the placenta. Hum. Pathol. 38, 1439–1446 (2007).

    Article  PubMed  Google Scholar 

  50. Giraud, A., Stephens, C. M., Boylan, G. B. & Walsh, B. H. The impact of perinatal inflammation on the electroencephalogram in preterm infants: a systematic review. Pediatr. Res. 92, 32–39 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Paz-Levy, D. et al. Inflammatory and vascular placental lesions are associated with neonatal amplitude integrated Eeg recording in early premature neonates. PLoS One 12, e0179481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tsamantioti, E., Lisonkova, S., Muraca, G., Ortqvist, A. K. & Razaz, N. Chorioamnionitis and risk of long-term neurodevelopmental disorders in offspring: a population-based cohort study. Am. J. Obstet. Gynecol. 227, 287 e281–287.e217 (2022).

    Article  Google Scholar 

  53. Shellhaas, R. A. et al. Early-life epilepsy after acute symptomatic neonatal seizures: a prospective multicenter study. Epilepsia 62, 1871–1882 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the study subjects for helping to advance our understanding of this field.

Funding

No targeted funding was obtained to support this study. J.B.R. is supported by NINDS grant 5K12NS098482-05 and a Duke University School of Medicine Strong Start Award.

Author information

Authors and Affiliations

Authors

Contributions

A.C.S.: Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; final approval of the version to be published. K.C.S.: Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; final approval of the version to be published. D.T.T.: Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; final approval of the version to be published. J.B.G.: Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; final approval of the version to be published. M.E.L.: Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; final approval of the version to be published. J.B.R.: Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; final approval of the version to be published.

Corresponding author

Correspondence to Jeffrey B. Russ.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

As determined by the Duke University Institutional Review Board, patient consent was not required for a retrospective chart review study utilizing deidentified patient data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stone, A.C., Strickland, K.C., Tanaka, D.T. et al. The association of placental pathology and neurodevelopmental outcomes in patients with neonatal encephalopathy. Pediatr Res 94, 1696–1706 (2023). https://doi.org/10.1038/s41390-023-02737-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02737-5

This article is cited by

Search

Quick links