Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Subcortical brain volumes in neonatal hypoxic–ischemic encephalopathy

Abstract

Background

Despite treatment with therapeutic hypothermia, hypoxic–ischemic encephalopathy (HIE) is associated with adverse developmental outcomes, suggesting the involvement of subcortical structures including the thalamus and basal ganglia, which may be vulnerable to perinatal asphyxia, particularly during the acute period. The aims were: (1) to examine subcortical macrostructure in neonates with HIE compared to age- and sex-matched healthy neonates within the first week of life; (2) to determine whether subcortical brain volumes are associated with HIE severity.

Methods

Neonates (n = 56; HIE: n = 28; Healthy newborns from the Developing Human Connectome Project: n = 28) were scanned with MRI within the first week of life. Subcortical volumes were automatically extracted from T1-weighted images. General linear models assessed between-group differences in subcortical volumes, adjusting for sex, gestational age, postmenstrual age, and total cerebral volumes. Within-group analyses evaluated the association between subcortical volumes and HIE severity.

Results

Neonates with HIE had smaller bilateral thalamic, basal ganglia and right hippocampal and cerebellar volumes compared to controls (all, p < 0.02). Within the HIE group, mild HIE severity was associated with smaller volumes of the left and right basal ganglia (both, p < 0.007) and the left hippocampus and thalamus (both, p < 0.04).

Conclusions

Findings suggest that, despite advances in neonatal care, HIE is associated with significant alterations in subcortical brain macrostructure.

Impact

  • Compared to their healthy counterparts, infants with HIE demonstrate significant alterations in subcortical brain macrostructure on MRI acquired as early as 4 days after birth.

  • Smaller subcortical volumes impacting sensory and motor regions, including the thalamus, basal ganglia, and cerebellum, were seen in infants with HIE.

  • Mild and moderate HIE were associated with smaller subcortical volumes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Segmented T1-weighted images comparing HIE and control subjects.
Fig. 2: Subcortical macrostructural differences in mean volumes between participants with HIE compared to healthy newborns.

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

References

  1. Lee, A. C. et al. Intrapartum-related neonatal encephalopathy incidence and impairment at regional and global levels for 2010 with trends from 1990. Pediatr. Res. 74(Suppl 1), 50–72 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gunn, A. J. & Bennet, L. Fetal hypoxia insults and patterns of brain injury: insights from animal models. Clin. Perinatol. 36, 579–593 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, B. L. & Glass, H. C. Cognitive outcomes in late childhood and adolescence of neonatal hypoxic-ischemic encephalopathy. Clin. Exp. Pediatr. 64, 608–618 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kurinczuk, J. J., White-Koning, M. & Badawi, N. Epidemiology of neonatal encephalopathy and hypoxic-ischaemic encephalopathy. Early Hum. Dev. 86, 329–338 (2010).

    Article  PubMed  Google Scholar 

  5. Sarnat, H. B. & Sarnat, M. S. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch. Neurol. 33, 696–705 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Mrelashvili, A., Russ, J. B., Ferriero, D. M. & Wusthoff, C. J. The Sarnat score for neonatal encephalopathy: looking back and moving forward. Pediatr. Res. 88, 824–825 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. de Vries, L. S. & Cowan, F. M. Evolving understanding of hypoxic-ischemic encephalopathy in the term infant. Semin. Pediatr. Neurol. 16, 216–225 (2009).

    Article  PubMed  Google Scholar 

  8. Jacobs, S. E. et al. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, CD003311 (2013).

  9. Wintermark, P., Mohammad, K. & Bonifacio, S. L. & Newborn Brain Society Guidelines and Publications Committee. Proposing a care practice bundle for neonatal encephalopathy during therapeutic hypothermia. Semin. Fetal Neonatal Med. 26, 101303 (2021).

    Article  PubMed  Google Scholar 

  10. de Vries, L. S. & Groenendaal, F. Patterns of neonatal hypoxic-ischaemic brain injury. Neuroradiology 52, 555–566 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Parikh, N. A. et al. Volumetric and anatomical MRI for hypoxic-ischemic encephalopathy: relationship to hypothermia therapy and neurosensory impairments. J. Perinatol. 29, 143–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Shapiro, K. A. et al. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy. Neuroimage Clin. 15, 572–580 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Annink, K. V. et al. The long-term effect of perinatal asphyxia on hippocampal volumes. Pediatr. Res. 85, 43–49 (2019).

    Article  PubMed  Google Scholar 

  14. Bregant, T. et al. Region-specific reduction in brain volume in young adults with perinatal hypoxic-ischaemic encephalopathy. Eur. J. Paediatr. Neurol. 17, 608–614 (2013).

    Article  PubMed  Google Scholar 

  15. Lemyre, B. & Chau, V. Hypothermia for newborns with hypoxic-ischemic encephalopathy. Paediatr. Child Health 23, 285–291 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hughes, E. J. et al. A dedicated neonatal brain imaging system. Magn. Reson. Med. 78, 794–804 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Papile, L. A., Burstein, J., Burstein, R. & Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J. Pediatr. 92, 529–534 (1978).

    Article  CAS  PubMed  Google Scholar 

  18. Zollei, L., Iglesias, J. E., Ou, Y., Grant, P. E. & Fischl, B. Infant FreeSurfer: an automated segmentation and surface extraction pipeline for T1-weighted neuroimaging data of infants 0-2 years. Neuroimage 218, 116946 (2020).

    Article  PubMed  Google Scholar 

  19. Sun, X. et al. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions. Biomed. Eng. Online 14, 73 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Macedo Rodrigues, K. et al. A FreeSurfer-compliant consistent manual segmentation of infant brains spanning the 0-2 year age range. Front. Hum. Neurosci. 9, 21 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Iglesias, J. E. & Sabuncu, M. R. Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24, 205–219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Knickmeyer, R. C. et al. A structural MRI study of human brain development from birth to 2 years. J. Neurosci. 28, 12176–12182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raguz, M. et al. Structural changes in the cortico-ponto-cerebellar axis at birth are associated with abnormal neurological outcomes in childhood. Clin. Neuroradiol. 31, 1005–1020 (2021).

    Article  PubMed  Google Scholar 

  24. Sabir, H. et al. Unanswered questions regarding therapeutic hypothermia for neonates with neonatal encephalopathy. Semin. Fetal Neonatal Med. 26, 101257 (2021).

    Article  PubMed  Google Scholar 

  25. Spencer, A. P. C. et al. Brain volumes and functional outcomes in children without cerebral palsy after therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy. Dev. Med. Child Neurol. 65, 367–375 (2023).

  26. Miller, S. P. et al. Patterns of brain injury in term neonatal encephalopathy. J. Pediatr. 146, 453–460 (2005).

    Article  PubMed  Google Scholar 

  27. Misser, S. K. et al. A proposed magnetic resonance imaging grading system for the spectrum of central neonatal parasagittal hypoxic-ischaemic brain injury. Insights Imaging 13, 11 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Roland, E. H., Poskitt, K., Rodriguez, E., Lupton, B. A. & Hill, A. Perinatal hypoxic-ischemic thalamic injury: clinical features and neuroimaging. Ann. Neurol. 44, 161–166 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Mota-Rojas, D. et al. Pathophysiology of perinatal asphyxia in humans and animal models. Biomedicines 10, 347 (2022).

  30. Gooijers, J. et al. Subcortical volume loss in the thalamus, putamen, and pallidum, induced by traumatic brain injury, is associated with motor performance deficits. Neurorehabil. Neural Repair 30, 603–614 (2016).

    Article  PubMed  Google Scholar 

  31. Torrico, T. J. & Munakomi, S. Neuroanatomy, Thalamus (StatPearls, 2022).

  32. Schneider, J. et al. Procedural pain and oral glucose in preterm neonates: brain development and sex-specific effects. Pain 159, 515–525 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Ilves, N. et al. Ipsilesional volume loss of basal ganglia and thalamus is associated with poor hand function after ischemic perinatal stroke. BMC Neurol. 22, 23 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nivins, S. et al. Associations between neonatal hypoglycaemia and brain volumes, cortical thickness and white matter microstructure in mid-childhood: an MRI study. Neuroimage Clin. 33, 102943 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Geva, S. et al. Volume reduction of caudate nucleus is associated with movement coordination deficits in patients with hippocampal atrophy due to perinatal hypoxia-ischaemia. Neuroimage Clin. 28, 102429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Martinez-Biarge, M. et al. Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology 76, 2055–2061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loh, W. Y. et al. Neonatal basal ganglia and thalamic volumes: very preterm birth and 7-year neurodevelopmental outcomes. Pediatr. Res. 82, 970–978 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Iwata, O. et al. “Therapeutic time window” duration decreases with increasing severity of cerebral hypoxia-ischaemia under normothermia and delayed hypothermia in newborn piglets. Brain Res. 1154, 173–180 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Morales, M. M. et al. Association of Total Sarnat Score with brain injury and neurodevelopmental outcomes after neonatal encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed. 106, 669–72. (2021).

    Article  PubMed  Google Scholar 

  40. Allen, K. A. & Brandon, D. H. Hypoxic ischemic encephalopathy: pathophysiology and experimental treatments. Newborn Infant Nurs. Rev. 11, 125–133 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sorokan, S. T., Jefferies, A. L. & Miller, S. P. Imaging the term neonatal brain. Paediatr. Child Health 23, 322–328 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Perlman, J. M. Intrapartum hypoxic-ischemic cerebral injury and subsequent cerebral palsy: medicolegal issues. Pediatrics 99, 851–859 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Ursini, G. et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat. Med. 24, 792–801 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Hagberg, H., Gressens, P. & Mallard, C. Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann. Neurol. 71, 444–457 (2012).

    Article  PubMed  Google Scholar 

  46. Barkovich, A. J. et al. Proton spectroscopy and diffusion imaging on the first day of life after perinatal asphyxia: preliminary report. AJNR Am. J. Neuroradiol. 22, 1786–1794 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the NICU families who participated in this study.

Funding

This study was financially supported by the Whaley and Harding Fellowship from the Children’s Health Foundation, Canada First Research Excellence Fund (BrainsCAN), and the Molly Towell Perinatal Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

L.M.N.K., B.K., P.C.M., P.M., K.F., T.A., E.S.N., S.B., S.d.R., L.T., M.J., and E.G.D. were involved in the study design, database variable creation, and data acquisition design and execution of the data analytic strategy and reviewed and/or revised the final version of the manuscript. L.M.N.K., B.K., and E.G.D. contributed to the execution of the data analytic strategy, analyzed the data, and wrote the initial draft of the manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Lilian M. N. Kebaya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Consent was obtained from guardians.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebaya, L.M.N., Kapoor, B., Mayorga, P.C. et al. Subcortical brain volumes in neonatal hypoxic–ischemic encephalopathy. Pediatr Res 94, 1797–1803 (2023). https://doi.org/10.1038/s41390-023-02695-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02695-y

Search

Quick links