Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Research Article
  • Published:

Determinants of bone parameters in young paediatric cancer survivors: the iBoneFIT project

Abstract

Background

Bone health is remarkably affected by endocrine side effects due to paediatric cancer treatments and the disease itself. We aimed to provide novel insights into the contribution of independent predictors of bone health in young paediatric cancer survivors.

Methods

This cross-sectional multicentre study was carried out within the iBoneFIT framework in which 116 young paediatric cancer survivors (12.1 ± 3.3 years old; 43% female) were recruited. The independent predictors were sex, years from peak height velocity (PHV), time from treatment completion, radiotherapy exposure, region-specific lean and fat mass, musculoskeletal fitness, moderate-vigorous physical activity and past bone-specific physical activity.

Results

Region-specific lean mass was the strongest significant predictor of most areal bone mineral density (aBMD), all hip geometry parameters and Trabecular Bone Score (β = 0.400–0.775, p ≤ 0.05). Years from PHV was positively associated with total body less head, legs and arms aBMD, and time from treatment completion was also positively associated with total hip and femoral neck aBMD parameters and narrow neck cross-sectional area (β = 0.327–0.398, p ≤ 0.05; β = 0.135–0.221, p ≤ 0.05), respectively.

Conclusion

Region-specific lean mass was consistently the most important positive determinant of all bone parameters, except for total hip aBMD, all Hip Structural Analysis parameters and Trabecular Bone Score.

Impact

  • The findings of this study indicate that region-specific lean mass is consistently the most important positive determinant of bone health in young paediatric cancer survivors.

  • Randomised clinical trials focused on improving bone parameters of this population should target at region-specific lean mass due to the site-specific adaptations of the skeleton to external loading following paediatric cancer treatment.

  • After paediatric cancer diagnosis, years from peak height velocity (somatic maturity) is critical for bone development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available due to the fact that the iBoneFIT project has not finished yet but are available from the corresponding author on reasonable request.

References

  1. Miller, K. D. et al. Cancer statistics for adolescents and young adults, 2020. CA Cancer J. Clin. 70, 443–459 (2020).

    Article  PubMed  Google Scholar 

  2. Siegel, R. L. et al. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).

    Article  PubMed  Google Scholar 

  3. Wilson, C. L. & Ness, K. K. Bone mineral density deficits and fractures in survivors of childhood cancer. Curr. Osteoporos. Rep. 11, 329–337 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Marcucci, G. et al. Bone health in childhood cancer: review of the literature and recommendations for the management of bone health in childhood cancer survivors. Ann. Oncol. 30, 908–920 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Kelly, P.M. & Pottenger, E. Bone health issues in the pediatric oncology patient. Semin. Oncol. Nurs. 38, 151275. https://doi.org/10.1016/J.SONCN.2022.151275 (2022).

  6. Weaver, C. M. et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos. Int. 27, 1281–1386 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gómez-Bruton, A., Matute-Llorente, Á., González-Agüero, A., Casajús, J. A. & Vicente-Rodríguez, G. Plyometric exercise and bone health in children and adolescents: a systematic review. World J. Pediatr. 13, 112–121 (2017).

    Article  PubMed  Google Scholar 

  8. Othman, F., Guo, C. Y., Webber, C., Atkinson, S. A. & Barr, R. D. Osteopenia in survivors of Wilms tumor. Int J. Oncol. 20, 827–833 (2002).

    PubMed  Google Scholar 

  9. Chen, J. H., Liu, C., You, L. & Simmons, C. A. Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J. Biomech. 43, 108–118 (2010).

    Article  PubMed  Google Scholar 

  10. Jarfelt, M., Fors, H., Lannering, B. & Bjarnason, R. Bone mineral density and bone turnover in young adult survivors of childhood acute lymphoblastic leukaemia. Eur. J. Endocrinol. 154, 303–309 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Zymbal, V., Baptista, F., Letuchy, E. M., Janz, K. F. & Levy, S. M. Mediating effect of muscle on the relationship of physical activity and bone. Med. Sci. Sports Exerc. 51, 202–210 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mostoufi-Moab, S. & Ward, L. M. Skeletal morbidity in children and adolescents during and following cancer therapy. Horm. Res. Paediatr. 91, 137–151 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Huncharek, M., Muscat, J. & Kupelnick, B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone 43, 312–321 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Rønne, M. S. et al. Bone mass development in childhood and its association with physical activity and vitamin D levels. The CHAMPS-Study DK. Calcif. Tissue Int. 104, 1–13 (2019).

    Article  PubMed  Google Scholar 

  15. Choudhary, A., Chou, J., Heller, G. & Sklar, C. Prevalence of vitamin D insufficiency in survivors of childhood cancer. Pediatr. Blood Cancer 60, 1237–1239 (2013).

    Article  PubMed  Google Scholar 

  16. Zhang, F. F., Saltzman, E., Must, A. & Parsons, S. K. Do childhood cancer survivors meet the diet and physical activity guidelines? A review of guidelines and literature. Int. J. Child Health Nutr. 1, 44–58. https://doi.org/10.6000/1929-4247.2012.01.01.06 (2012).

  17. Vlachopoulos, D. et al. Determinants of bone outcomes in adolescent athletes at baseline: The PRO-BONE Study. Med. Sci. Sports Exerc. 49, 1389–1396 (2017).

    Article  PubMed  Google Scholar 

  18. Gil-Cosano, J. J. et al. The effect of an online exercise programme on bone health in paediatric cancer survivors (iBoneFIT): study protocol of a multi-centre randomized controlled trial. BMC Public Health 20, 1520 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Vandenbroucke, J. P. et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med. 4, 1628–1654 (2007).

    Article  Google Scholar 

  20. Moore, S. A. et al. Enhancing a somatic maturity prediction model. Med. Sci. Sports Exerc. 47, 1755–1764 (2015).

    Article  PubMed  Google Scholar 

  21. Gurney, J. G. et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatr. Blood Cancer 61, 1270–1276 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Migueles, J. H. et al. Comparability of published cut-points for the assessment of physical activity: Implications for data harmonization. Scand. J. Med. Sci. Sports 29, 566–574 (2019).

    Article  PubMed  Google Scholar 

  23. Evenson, K. R., Catellier, D. J., Gill, K., Ondrak, K. S. & McMurray, R. G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 26, 1557–1565 (2008).

    Article  PubMed  Google Scholar 

  24. Weeks, B. K. & Beck, B. R. The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos. Int 19, 1567–1577 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Ruiz, J. R. et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br. J. Sports Med. 45, 518–524 (2011).

    Article  PubMed  Google Scholar 

  26. Ruiz, J. R. et al. Predictive validity of health-related fitness in youth: a systematic review. Br. J. Sports Med. 43, 909–923 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Julián Almárcegui, C. et al. Validity of a food-frequency questionnaire for estimating calcium intake in adolescent swimmers. Nutr. Hosp. 32, 1773–1779 (2015).

    PubMed  Google Scholar 

  28. Bolek-Berquist, J. et al. Use of a questionnaire to assess vitamin D status in young adults. Public Health Nutr. 12, 236–243 (2009).

    Article  PubMed  Google Scholar 

  29. Shuhart, C. R. et al. Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J. Clin. Densitom. 22, 453–471 (2019).

    Article  PubMed  Google Scholar 

  30. Johnson, J. & Dawson-Hughes, B. Precision and stability of dual-energy X-ray absorptiometry measurements. Calcif. Tissue Int. 49, 174–178 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Beck, T. J., Ruff, C. B., Warden, K. E., Scott, W. W. & Rao, G. U. Predicting femoral neck strength from bone mineral data. A structural approach. Invest. Radio. 25, 6–18 (1990).

    Article  CAS  Google Scholar 

  32. Khoo, B. C. C. et al. In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone 37, 112–121 (2005).

    Article  PubMed  Google Scholar 

  33. Hans, D., Goertzen, A. L., Krieg, M. A. & Leslie, W. D. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J. Bone Min. Res. 26, 2762–2769 (2011).

    Article  Google Scholar 

  34. Pothuaud, L. et al. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J. Clin. Densitom. 12, 170–176 (2009).

    Article  PubMed  Google Scholar 

  35. Silva, B. C. et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J. Bone Min. Res. 29, 518–530 (2014).

    Article  Google Scholar 

  36. Shawwa, K. et al. Predictors of trabecular bone score in school children. Osteoporos. Int. 27, 703–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Del Rio, L., Di Gregorio, S. & Winzenrieth, R. WCO-IOF-ESCEO Seville 2014. Osteoporos. Int. 25(Suppl 2), 73–445 (2014).

    Google Scholar 

  38. Winzenrieth, R., Cormier, C., DiGregorio, S. & Del Rio, L. Influence of age and gender on spine bone density and TBS microarchitectural texture parameters in infants. Bone Abstracts 2, LB1. https://doi.org/10.1530/BONEABS.2.LB1 (2013).

  39. Guagnelli, M. A. et al. Bone age as a correction factor for the analysis of trabecular bone score (TBS) in children. Arch. Osteoporos. 14, 26. https://doi.org/10.1007/S11657-019-0573-6 (2019).

  40. Macdonald, H., Kontulainen, S., Petit, M., Janssen, P. & McKay, H. Bone strength and its determinants in pre- and early pubertal boys and girls. Bone 39, 598–608 (2006).

    Article  PubMed  Google Scholar 

  41. Davies, J. H., Evans, B. A. J. & Gregory, J. W. Bone mass acquisition in healthy children. Arch. Dis. Child 90, 373–378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Agostinete, R. R. et al. The mediating role of lean soft tissue in the relationship between somatic maturation and bone density in adolescent practitioners and non-practitioners of sports. Int. J. Environ. Res. Public Health 18, 3008 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stevens, J. P. Applied Multivariate Statistics for the Social Sciences (Lawrence Erlbaum, Mahwah, NJ, 2002).

  44. Daly, R. M., Stenevi-Lundgren, S., Linden, C. & Karlsson, M. K. Muscle determinants of bone mass, geometry and strength in prepubertal girls. Med. Sci. Sports Exerc. 40, 1135–1141 (2008).

    Article  PubMed  Google Scholar 

  45. Högler, W. et al. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: comparison of fracture risk with the General Practice Research Database. Pediatr. Blood Cancer 48, 21–27 (2007).

    Article  PubMed  Google Scholar 

  46. Lim, J. S. et al. Young age at diagnosis, male sex, and decreased lean mass are risk factors of osteoporosis in long-term survivors of osteosarcoma. J. Pediatr. Hematol. Oncol. 35, 54–60 (2013).

    Article  PubMed  Google Scholar 

  47. Muszynska-Roslan, K., Konstantynowicz, J., Krawczuk-Rybak, M. & Protas, P. Body composition and bone mass in survivors of childhood cancer. Pediatr. Blood Cancer 48, 200–204 (2007).

    Article  PubMed  Google Scholar 

  48. Muszynska-Roslan, K. et al. Bone mineral density in pediatric survivors of Hodgkin and non-Hodgkin lymphomas. Adv. Med. Sci. 59, 200–205 (2014).

    Article  PubMed  Google Scholar 

  49. Sioen, I., Lust, E., de Henauw, S., Moreno, L. A. & Jiménez-Pavón, D. Associations between body composition and bone health in children and adolescents: a systematic review. Calcif. Tissue Int. 99, 557–577 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Mostoufi-Moab, S. et al. Adverse fat depots and marrow adiposity are associated with skeletal deficits and insulin resistance in long-term survivors of pediatric hematopoietic stem cell transplantation. J. Bone Miner. Res. 30, 1657–1666 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Li, J., Kwong, D. L. W. & Chan, G. C. F. The effects of various irradiation doses on the growth and differentiation of marrow-derived human mesenchymal stromal cells. Pediatr. Transplant. 11, 379–387 (2007).

    Article  PubMed  Google Scholar 

  52. Baxter-Jones, A. D. G., Faulkner, R. A., Forwood, M. R., Mirwald, R. L. & Bailey, D. A. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J. Bone Min. Res. 26, 1729–1739 (2011).

    Article  Google Scholar 

  53. Mogil, R. J. et al. Effect of low-magnitude, high-frequency mechanical stimulation on BMD among young childhood cancer survivors a randomized clinical trial. JAMA Oncol. 2, 908–914 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Elnaggar, R. K. & Mohamed, R. R. Aqua-plyometric exercises: potential implications for bone mineral density, functional capacity, and quality of life in survivors of childhood acute lymphoblastic leukemia. Semin. Oncol. Nurs. 37, 151225. https://doi.org/10.1016/j.soncn.2021.151225 (2021).

  55. Dubnov-Raz, G. et al. Changes in fitness are associated with changes in body composition and bone health in children after cancer. Acta Paediatr. 104, 1055–1061 (2015).

    Article  PubMed  Google Scholar 

  56. Petit, M. A. et al. Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone 36, 568–576 (2005).

    Article  PubMed  Google Scholar 

  57. Mostoufi-Moab, S. et al. Body composition abnormalities in long-term survivors of pediatric hematopoietic stem cell transplantation. J. Pediatr. 160, 122–128 (2012).

    Article  PubMed  Google Scholar 

  58. Mostoufi-Moab, S. et al. Bone density and structure in long-term survivors of pediatric allogeneic hematopoietic stem cell transplantation. J. Bone Miner. Res. 27, 760–769 (2012).

    Article  PubMed  Google Scholar 

  59. Mostoufi-Moab, S. & Halton, J. Bone morbidity in childhood leukemia: epidemiology, mechanisms, diagnosis, and treatment. Curr. Osteoporos. Rep. 12, 300–312 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shawwa, K. et al. Predictors of trabecular bone score in school children. Osteoporos. Int. 27, 703–710 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Ubago-Guisado, E. et al. Longitudinal determinants of 12-month changes on bone health in adolescent male athletes. Arch. Osteoporos. 13, 106. https://doi.org/10.1007/S11657-018-0519-4 (2018).

  62. Ireland, A. et al. Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players. Med. Sci. Sports Exerc. 45, 1749–1758 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Herein, we would like to thank the disposal and consideration of all families involved in the investigation. The authors of this manuscript certify that they comply with the ethical guidelines for authorship and publishing in the Pediatric Research. The corresponding author affirms that all authors have contributed significantly to the work.

Funding

This study has been partially supported by the Spanish Ministry of Science and Innovation (ref: PID2020-117302RA-I00 financiado por MCIN/ AEI /10.13039/501100011033), La Caixa Foundation (ref: LCF/BQ/PR19/11700007), the University of Granada Plan Propio de Investigación 2021-Excellence actions: Unit of Excellence on Exercise, Nutrition and Health (UCEENS) and the CIBEROBN, Centro de Investigación Biomédica en Red (CB22/03/00058), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea – European Regional Development Fund. A.M.-P. is the recipient of a predoctoral fellowship (FPU20/05530) by the Spanish Ministry of Education, Culture and Sport. E.U.-G. is supported by the Maria Zambrano fellowship by the Ministerio de Universidades y la Unión Europea—NextGenerationEU.

Author information

Authors and Affiliations

Authors

Contributions

A.M.-P., F.J.L.-C., E.U.-G., A.R.-S., J.J.G.-C., J.R.R. and L.G.-M. coordinated the study sites, including participant recruitment. A.M.-P., E.U.-G., A.R.-S., J.J.G.-C. and L.G.-M. wrote all the protocol versions, and obtained ethical approval and funding. L.G.-M. was the principal investigator. A.M.-P., F.J.L.-C., E.U.-G., A.R.-S., J.J.G.-C. and L.G.-M. were responsible for data collection, including clinical data. A.M.-P. conceptualised and designed the study with the support of E.U.-G., D.V. and L.G.-M. A.M.-P. drafted the initial manuscript and all co-authors were involved in the interpretation of data, revised the manuscript and approved the final manuscript as submitted.

Corresponding author

Correspondence to Esther Ubago-Guisado.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

All parents and participants provided the required consent and assent, respectively.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marmol-Perez, A., Ubago-Guisado, E., Llorente-Cantarero, F.J. et al. Determinants of bone parameters in young paediatric cancer survivors: the iBoneFIT project. Pediatr Res 94, 1538–1546 (2023). https://doi.org/10.1038/s41390-023-02645-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02645-8

Search

Quick links