Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Brain injury and long-term outcome after neonatal surgery for non-cardiac congenital anomalies

Abstract

Background

There is growing evidence that neonatal surgery for non-cardiac congenital anomalies (NCCAs) in the neonatal period adversely affects long-term neurodevelopmental outcome. However, less is known about acquired brain injury after surgery for NCCA and abnormal brain maturation leading to these impairments.

Methods

A systematic search was performed in PubMed, Embase, and The Cochrane Library on May 6, 2022 on brain injury and maturation abnormalities seen on magnetic resonance imaging (MRI) and its associations with neurodevelopment in neonates undergoing NCCA surgery the first month postpartum. Rayyan was used for article screening and ROBINS-I for risk of bias assessment. Data on the studies, infants, surgery, MRI, and outcome were extracted.

Results

Three eligible studies were included, reporting 197 infants. Brain injury was found in n = 120 (50%) patients after NCCA surgery. Sixty (30%) were diagnosed with white matter injury. Cortical folding was delayed in the majority of cases. Brain injury and delayed brain maturation was associated with a decrease in neurodevelopmental outcome at 2 years of age.

Conclusions

Surgery for NCCA was associated with high risk of brain injury and delay in maturation leading to delay in neurocognitive and motor development. However, more research is recommended for strong conclusions in this group of patients.

Impact

  • Brain injury was found in 50% of neonates who underwent NCCA surgery.

  • NCCA surgery is associated with a delay in cortical folding.

  • There is an important research gap regarding perioperative brain injury and NCCA surgery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Visualization of the results from the ROBINS-I risk of bias assessment tool.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rowe, M. I. & Rowe, S. A. The last fifty years of neonatal surgical management. Am. J. Surg. 180, 345–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Stolwijk, L. J. et al. Neurodevelopmental outcomes after neonatal surgery for major noncardiac anomalies. Pediatrics 137, 335–341.e1 (2016).

    Article  Google Scholar 

  3. Moran, M. M. et al. Associations of neonatal noncardiac surgery with brain structure and neurodevelopment: a prospective case-control study. J. Pediatr. 212, 93–101.e2 (2019).

    Article  PubMed  Google Scholar 

  4. Radhakrishnan, R. et al. Correlation of MRI brain injury findings with neonatal clinical factors in infants with congenital diaphragmatic hernia. AJNR Am. J. Neuroradiol. 37, 1745–1751 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walker, K. et al. Developmental outcomes at 3 years of age following major non-cardiac and cardiac surgery in term infants: a population-based study. J. Paediatr. Child Health 51, 1221–1225 (2015).

    Article  PubMed  Google Scholar 

  6. Mawlana, W. et al. Neurodevelopmental outcomes of infants with esophageal atresia and tracheoesophageal fistula. J. Pediatr. Surg. 53, 1651–1654 (2018).

    Article  PubMed  Google Scholar 

  7. Gischler, S. J. et al. Interdisciplinary structural follow-up of surgical newborns: a prospective evaluation. J. Pediatr. Surg. 44, 1382–1389 (2009).

    Article  PubMed  Google Scholar 

  8. Church, J. T. et al. Neurodevelopmental outcomes in CDH survivors: a single institution’s experience. J. Pediatr. Surg. 53, 1087–1091 (2018).

    Article  PubMed  Google Scholar 

  9. Gorra, A. S. et al. Long-term neurodevelopmental outcomes in children born with gastroschisis: the tiebreaker. J. Pediatr. Surg. 47, 125–129 (2012).

    Article  PubMed  Google Scholar 

  10. Harris, E. L. et al. The long-term neurodevelopmental and psychological outcomes of gastroschisis: a cohort study. J. Pediatr. Surg. 51, 549–553 (2016).

    Article  PubMed  Google Scholar 

  11. Bevilacqua, F. et al. Factors affecting short-term neurodevelopmental outcome in children operated on for major congenital anomalies. J. Pediatr. Surg. 50, 1125–1129 (2015).

    Article  PubMed  Google Scholar 

  12. Davidson, A. J. et al. Anesthesia and neurotoxicity to the developing brain: the clinical relevance. Paediatr. Anaesth. 21, 716–721 (2011).

    Article  PubMed  Google Scholar 

  13. Morriss, F. H. Jr. et al. Surgery and neurodevelopmental outcome of very low-birth-weight infants. JAMA Pediatr. 168, 746–754 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wilder, R. T. et al. Is there any relationship between long-term behavior disturbance and early exposure to anesthesia? Curr. Opin. Anaesthesiol. 23, 332–336 (2010).

    Article  PubMed  Google Scholar 

  15. DiMaggio, C., Sun, L. S., Ing, C. & Li, G. Pediatric anesthesia and neurodevelopmental impairments: a Bayesian meta-analysis. J. Neurosurg. Anesthesiol. 24, 376–381 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baak, L. M. et al. Feasibility and safety of intranasally administered mesenchymal stromal cells after perinatal arterial ischaemic stroke in the Netherlands (PASSIoN): a first-in-human, open-label intervention study. Lancet Neurol. 21, 528–536 (2022).

    Article  PubMed  Google Scholar 

  17. Benders, M. J. et al. Feasibility and safety of erythropoietin for neuroprotection after perinatal arterial ischemic stroke. J. Pediatr. 164, 481–486.e62 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J. Clin. Epidemiol. 62, 1006–1012 (2009).

    Article  PubMed  Google Scholar 

  19. Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sterne, J. A. C. et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ 355, i4919 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stolwijk, L. J. et al. Neonatal surgery for noncardiac congenital anomalies: neonates at risk of brain injury. J. Pediatr. 182, 335–341.e1 (2017).

    Article  PubMed  Google Scholar 

  22. Gunn-Charlton, J. K. et al. Neonatal neuroimaging after repair of congenital diaphragmatic hernia and long-term neurodevelopment outcome. World J. Pediatr. Surg. 2, e000037 (2019).

    Article  Google Scholar 

  23. Mongerson, C. R. L., Jaimes, C., Zurakowski, D., Jennings, R. W. & Bajic, D. Infant corpus callosum size after surgery and critical care for long-gap esophageal atresia: qualitative and quantitative MRI. Sci. Rep. 10, 6408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudisill, S. S. et al. Neurologic injury and brain growth in the setting of long-gap esophageal atresia perioperative critical care: a pilot study. Brain Sci. 9, 383 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mongerson, C. R. L. et al. Infant brain structural MRI analysis in the context of thoracic non-cardiac surgery and critical care. Front. Pediatr. 7, 315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mongerson, C. R. L., Jennings, R. W., Zurakowski, D. & Bajic, D. Quantitative MRI study of infant regional brain size following surgery for long-gap esophageal atresia requiring prolonged critical care. Int. J. Dev. Neurosci. 79, 11–20 (2019).

    Article  PubMed Central  Google Scholar 

  27. Rhee, C. J. et al. Neonatal cerebrovascular autoregulation. Pediatr. Res. 84, 602–610 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Khwaja, O. & Volpe, J. J. Pathogenesis of cerebral white matter injury of prematurity. Arch. Dis. Child. Fetal Neonatal Ed. 93, F153–F161 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Baburamani, A. A., Ek, C. J., Walker, D. W. & Castillo-Melendez, M. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair? Front. Physiol. 3, 424 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mader, I., Schöning, M., Klose, U. & Küker, W. Neonatal cerebral infarction diagnosed by diffusion-weighted MRI: pseudonormalization occurs early. Stroke 33, 1142–1145 (2002).

    Article  PubMed  Google Scholar 

  31. Hirtz, D. & Ment, L. R. Cerebellar hemorrhage in the premature infant-time for a balanced approach. J. Pediatr. 178, 9–10 (2016).

    Article  PubMed  Google Scholar 

  32. Dudink, J., Jeanne Steggerda, S. & Horsch, S. State-of-the-art neonatal cerebral ultrasound: technique and reporting. Pediatr. Res. 87, 3–12 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kubota, A. et al. Psychosocial and cognitive consequences of major neonatal surgery. J. Pediatr. Surg. 46, 2250–2253 (2011).

    Article  PubMed  Google Scholar 

  34. Peetsold, M. G. et al. Psychological outcome and quality of life in children born with congenital diaphragmatic hernia. Arch. Dis. Child. 94, 834–840 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Frisk, V., Jakobson, L. S., Unger, S., Trachsel, D. & O’Brien, K. Long-term neurodevelopmental outcomes of congenital diaphragmatic hernia survivors not treated with extracorporeal membrane oxygenation. J. Pediatr. Surg. 46, 1309–1318 (2011).

    Article  PubMed  Google Scholar 

  36. Jakobson, L. S., Frisk, V., Trachsel, D. & O’Brien, K. Visual and fine-motor outcomes in adolescent survivors of high-risk congenital diaphragmatic hernia who did not receive extracorporeal membrane oxygenation. J. Perinatol. 29, 630–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hamrick, S. E., Strickland, M. J., Shapira, S. K., Autry, A. & Schendel, D. Use of special education services among children with and without congenital gastrointestinal anomalies. Am. J. Intellect. Dev. Disabil. 115, 421–432 (2010).

    Article  PubMed  Google Scholar 

  38. Cheong, J. L. et al. Association between moderate and late preterm birth and neurodevelopment and social-emotional development at age 2 years. JAMA Pediatr. 3, e164805 (2017).

    Article  Google Scholar 

  39. Apai, C., Shah, R., Tran, K. & Pandya Shah, S. Anesthesia and the developing brain: a review of sevoflurane-induced neurotoxicity in pediatric populations. Clin. Ther. 43, 762–778 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Warner, D. O. et al. Neuropsychological and behavioral outcomes after exposure of young children to procedures requiring general anesthesia: the Mayo Anesthesia Safety in Kids (MASK) Study. Anesthesiology 129, 89–105 (2018).

    Article  PubMed  Google Scholar 

  41. Useinovic, N., Maksimovic, S., Near, M., Quillinan, N. & Jevtovic-Todorovic, V. Do we have viable protective strategies against anesthesia-induced developmental neurotoxicity? Int. J. Mol. Sci. 23, 1128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Davidson, A. J. et al. Neurodevelopmental outcome at 2 years of age after general anaesthesia and awake-regional anaesthesia in infancy (GAS): an international multicentre, randomised controlled trial. Lancet 387, 239–250 (2016).

    Article  PubMed  Google Scholar 

  43. McCann, M. E. et al. Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. Lancet 393, 664–677 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ibrahim, J., Mir, I. & Chalak, L. Brain imaging in preterm infants <32 weeks gestation: a clinical review and algorithm for the use of cranial ultrasound and qualitative brain MRI. Pediatr. Res. 84, 779–806 (2018).

    Article  Google Scholar 

  45. Volpe, J. J. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hinojosa-Rodríguez, M. et al. Clinical neuroimaging in the preterm infant: diagnosis and prognosis. Neuroimage Clin. 14, 355–368 (2017).

    Article  Google Scholar 

  47. Volpe, J. J. Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions. Pediatr. Neurol. 95, 42–66 (2019).

    Article  PubMed  Google Scholar 

  48. Chorna, O., Hamm, E., Cummings, C., Fetters, A. & Maitre, N. L. Speech and language interventions for infants aged 0 to 2 years at high risk for cerebral palsy: a systematic review. Dev. Med. Child Neurol. 59, 355–360 (2017).

    Article  PubMed  Google Scholar 

  49. Perinatal arterial stroke treated with stromal cells intranasally. ClinicalTrials.gov identifier: NCT03356821.

  50. Darbepoetin for ischemic neonatal stroke to augment regeneration (DINOSAUR) ClinicalTrials.gov identifier: NCT03171818.

  51. Novak, I. et al. Early, accurate diagnosis and early intervention in cerebral palsy: advances in diagnosis and treatment. JAMA Pediatr. 171, 897–907 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Each author has met the Pediatric Research authorship requirements. M.A., M.L.T., J.D., P.M.A.L., M.J.N.L.B.: substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; drafting the article or revising it critically for important intellectual content; and final approval of the version to be published. M.Y.A.L.: drafting the article or revising it critically for important intellectual content; and final approval of the version to be published.

Corresponding author

Correspondence to Manon J. N. L. Benders.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aalten, M., Tataranno, M.L., Dudink, J. et al. Brain injury and long-term outcome after neonatal surgery for non-cardiac congenital anomalies. Pediatr Res 94, 1265–1272 (2023). https://doi.org/10.1038/s41390-023-02629-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02629-8

Search

Quick links