Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Maturational effect of leptin on CO2 chemosensitivity in newborn rats

Abstract

Background

Leptin augments central CO2 chemosensitivity and stabilizes breathing in adults. Premature infants have unstable breathing and low leptin levels. Leptin receptors are on CO2 sensitive neurons in the Nucleus Tractus Solitarius (NTS) and locus coeruleus (LC). We hypothesized that exogenous leptin improves hypercapnic respiratory response in newborn rats by improving central CO2 chemosensitivity.

Methods

In rats at postnatal day (p)4 and p21, hyperoxic and hypercapnic ventilatory responses, and pSTAT and SOCS3 protein expression in the hypothalamus, NTS and LC were measured before and after treatment with exogenous leptin (6 µg/g).

Results

Exogenous leptin increased the hypercapnic response in p21 but not in p4 rats (P ≤ 0.001). At p4, leptin increased pSTAT expression only in the LC, and SOCS3 expression in the NTS and LC; while at p21 pSTAT and SOCS3 levels were higher in the hypothalamus, NTS, and LC (P ≤ 0.05).

Conclusions

We describe the developmental profile of the effect of exogenous leptin on CO2 chemosensitivity. Exogenous leptin does not augment central CO2 sensitivity during the first week of life in newborn rats. The translational implication of these findings is that low plasma leptin levels in premature infants may not be contributing to respiratory instability.

Impact

  • Exogenous leptin does not augment CO2 sensitivity during the first week of life in newborn rats, similar to the developmental period when feeding behavior is resistant to leptin.

  • Exogenous leptin increases CO2 chemosensitivity in newborn rats after the 3rd week of life and upregulates the expression of pSTAT and SOC3 in the hypothalamus, NTS and LC.

  • Low plasma leptin levels in premature infants are unlikely contributors to respiratory instability via decreased CO2 sensitivity in premature infants. Thus, it is highly unlikely that exogenous leptin would alter this response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative ventilatory tracing of rats using whole-body plethysmography in postnatal days 4 and 21.
Fig. 2: Effect of leptin on the hyperoxic ventilatory response of rats at postnatal days 4 and 21.
Fig. 3: Effect of leptin on respiratory variability.
Fig. 4: Leptin increases the hypercapnic ventilatory response (HCVR) at postnatal day 21, but not at postnatal day 4.
Fig. 5: Effect of leptin on pSTAT3 and SOCS3 protein expression in the brain.

Similar content being viewed by others

Data availability

All data generated and analyzed have been included in this article and Supplementary materials.

References

  1. Di Fiore, J. M., Martin, R. J. & Gauda, E. B. Apnea of prematurity-perfect storm. Respir. Physiol. Neurobiol. 189, 213–222 (2013).

    PubMed  Google Scholar 

  2. Gauda, E. B. & Master, Z. Contribution of relative leptin and adiponectin deficiencies in premature infants to chronic intermittent hypoxia: Exploring a new hypothesis. Respir. Physiol. Neurobiol. 256, 119–127 (2018).

    CAS  PubMed  Google Scholar 

  3. Darnall, R. A. The role of CO(2) and central chemoreception in the control of breathing in the fetus and the neonate. Respir. Physiol. Neurobiol. 173, 201–212 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Al-Saif, S. et al. A randomized controlled trial of theophylline versus CO2 inhalation for treating apnea of prematurity. J. Pediatr. 153, 513–518 (2008).

    CAS  PubMed  Google Scholar 

  5. Martin, R. J., Wang, K., Köroğlu, O., Di Fiore, J. & Kc, P. Intermittent hypoxic episodes in preterm infants: do they matter? Neonatology 100, 303–310 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Savich, R. D., Guerra, F. A., Lee, C. C. & Kitterman, J. A. Prostaglandin E2 decreases fetal breathing movements, but not pulmonary blood flow, in fetal sheep. J. Appl. Physiol. 78, 1477–1484 (1995).

    CAS  PubMed  Google Scholar 

  7. Masuzaki, H. et al. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat. Med. 3, 1029–1033 (1997).

    CAS  PubMed  Google Scholar 

  8. Rajala, M. W. & Scherer, P. E. Minireview: The adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144, 3765–3773 (2003).

    CAS  PubMed  Google Scholar 

  9. Münzberg, H. & Morrison, C. D. Structure, production and signaling of leptin. Metab. Clin. Exp. 64, 13–23 (2015).

    PubMed  Google Scholar 

  10. Inyushkin, A. N., Inyushkina, E. M. & Merkulova, N. A. Respiratory responses to microinjections of leptin into the solitary tract nucleus. Neurosci. Behav. Physiol. 39, 231–240 (2009).

    CAS  PubMed  Google Scholar 

  11. Kerem, N. C. et al. Respiratory functions in adolescents hospitalized for anorexia nervosa: a prospective study. Int. J. Eat. Disord. 45, 415–422 (2012).

    PubMed  Google Scholar 

  12. Phipps, P. R., Starritt, E., Caterson, I. & Grunstein, R. R. Association of serum leptin with hypoventilation in human obesity. Thorax 57, 75–76 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Delahaye, F. et al. Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups. Endocrinology 149, 470–475 (2008).

    CAS  PubMed  Google Scholar 

  14. Guyenet, P. G., Stornetta, R. L. & Bayliss, D. A. Central respiratory chemoreception. J. Comp. Neurol. 518, 3883–3906 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Caron, E., Sachot, C., Prevot, V. & Bouret, S. G. Distribution of leptin-sensitive cells in the postnatal and adult mouse brain. J. Comp. Neurol. 518, 459–476 (2010).

    CAS  PubMed  Google Scholar 

  16. Bjørbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E. & Flier, J. S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    PubMed  Google Scholar 

  17. Münzberg, H., Huo, L., Nillni, E. A., Hollenberg, A. N. & Bjørbaek, C. Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144, 2121–2131 (2003).

    PubMed  Google Scholar 

  18. Kinkead, R., Dupenloup, L., Valois, N. & Gulemetova, R. Stress-induced attenuation of the hypercapnic ventilatory response in awake rats. J. Appl. Physiol. 90, 1729–1735 (2001).

    CAS  PubMed  Google Scholar 

  19. Mendelson, W. B. et al. Periodic cessation of respiratory effort during sleep in adult rats. Physiol. Behav. 43, 229–234 (1988).

    CAS  PubMed  Google Scholar 

  20. Lopes, L. T. et al. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats. Neuroscience 324, 446–468 (2016).

    CAS  PubMed  Google Scholar 

  21. Ivanovska, J. et al. Recombinant adiponectin protects the newborn rat lung from lipopolysaccharide-induced inflammatory injury. Physiol. Rep. 8, e14553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jankov, R. P. et al. A role for platelet-derived growth factor beta-receptor in a newborn rat model of endothelin-mediated pulmonary vascular remodeling. Am. J. Physiol. Lung Cell Mol. Physiol. 288, L1162–L1170 (2005).

    CAS  PubMed  Google Scholar 

  23. Inyushkina, E. M., Merkulova, N. A. & Inyushkin, A. N. Mechanisms of the respiratory activity of leptin at the level of the solitary tract nucleus. Neurosci. Behav. Physiol. 40, 707–713 (2010).

    CAS  PubMed  Google Scholar 

  24. Laque, A. et al. Leptin receptor neurons in the mouse hypothalamus are colocalized with the neuropeptide galanin and mediate anorexigenic leptin action. Am. J. Physiol. Endocrinol. Metab. 304, E999–E1011 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gauda, E. B., Carroll, J. L. & Donnelly, D. F. Developmental maturation of chemosensitivity to hypoxia of peripheral arterial chemoreceptors-invited article. Adv. Exp. Med. Biol. 648, 243–255 (2009).

    CAS  PubMed  Google Scholar 

  26. Williams, B. A. et al. Development of respiratory chemoreflexes in response to alternations of fractional inspired oxygen in the newborn infant. J. Physiol. (Lond.) 442, 81–90 (1991).

    CAS  PubMed  Google Scholar 

  27. Gauda, E. B. & Lawson, E. E. Developmental influences on carotid body responses to hypoxia. Respir. Physiol. 121, 199–208 (2000).

    CAS  PubMed  Google Scholar 

  28. Liu, Q., Lowry, T. F. & Wong-Riley, M. T. T. Postnatal changes in ventilation during normoxia and acute hypoxia in the rat: implication for a sensitive period. J. Physiol. (Lond.) 577, 957–970 (2006).

    CAS  PubMed  Google Scholar 

  29. Al-Matary, A. et al. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates. Semin. Perinatol. 28, 264–272 (2004).

    PubMed  Google Scholar 

  30. Cardot, V. et al. Ventilatory response to a hyperoxic test is related to the frequency of short apneic episodes in late preterm neonates. Pediatr. Res. 62, 591–596 (2007).

    PubMed  Google Scholar 

  31. Porzionato, A. et al. Expression of leptin and leptin receptor isoforms in the rat and human carotid body. Brain Res. 1385, 56–67 (2011).

    CAS  PubMed  Google Scholar 

  32. Caballero-Eraso, C. et al. Leptin acts in the carotid bodies to increase minute ventilation during wakefulness and sleep and augment the hypoxic ventilatory response. J. Physiol. (Lond.) 597, 151–172 (2019).

    CAS  PubMed  Google Scholar 

  33. Deacon-Diaz, N. & Malhotra, A. Inherent vs. induced loop gain abnormalities in obstructive sleep apnea. Front. Neurol. 9, 896 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Putnam, R. W., Conrad, S. C., Gdovin, M. J., Erlichman, J. S. & Leiter, J. C. Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity. Respir. Physiol. Neurobiol. 149, 165–179 (2005).

    PubMed  PubMed Central  Google Scholar 

  35. Bouret, S. G., Bates, S. H., Chen, S., Myers, M. G. & Simerly, R. B. Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J. Neurosci. 32, 1244–1252 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Cottrell, E. C. et al. Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R631–R639 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ertl, T. et al. Postnatal changes of leptin levels in full-term and preterm neonates: their relation to intrauterine growth, gender and testosterone. Biol. Neonate 75, 167–176 (1999).

    CAS  PubMed  Google Scholar 

  38. Stoll-Becker, S. et al. Influence of gestational age and intrauterine growth on leptin concentrations in venous cord blood of human newborns. Klin. Padiatr. 215, 3–8 (2003).

    CAS  PubMed  Google Scholar 

  39. Attig, L. et al. Postnatal leptin promotes organ maturation and development in IUGR piglets. PLoS One 8, e64616 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Attig, L., Larcher, T., Gertler, A., Abdennebi-Najar, L. & Djiane, J. Postnatal leptin is necessary for maturation of numerous organs in newborn rats. Organogenesis 7, 88–94 (2011).

    PubMed  PubMed Central  Google Scholar 

  41. Ahima, R. S. & Hileman, S. M. Postnatal regulation of hypothalamic neuropeptide expression by leptin: implications for energy balance and body weight regulation. Regul. Pept. 92, 1–7 (2000).

    CAS  PubMed  Google Scholar 

  42. Mistry, A. M., Swick, A. & Romsos, D. R. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice. Am. J. Physiol. 277, R742–R747 (1999).

    CAS  PubMed  Google Scholar 

  43. Pan, W., Hsuchou, H., Tu, H. & Kastin, A. J. Developmental changes of leptin receptors in cerebral microvessels: unexpected relation to leptin transport. Endocrinology 149, 877–885 (2008).

    CAS  PubMed  Google Scholar 

  44. Abdennebi-Najar, L. et al. Basal, endogenous leptin is metabolically active in newborn rat pups. J. Matern. Fetal Neonatal Med. 24, 1486–1491 (2011).

    CAS  PubMed  Google Scholar 

  45. Pho, H. et al. Leptin receptor expression in the dorsomedial hypothalamus stimulates breathing during NREM sleep in db/db mice. Sleep 44, zsab046 (2021).

    PubMed  PubMed Central  Google Scholar 

  46. Smith, J. T., Mark, P. J. & Waddell, B. J. Developmental increases in plasma leptin binding activity and tissue Ob-Re mRNA expression in the rat. J. Endocrinol. 184, 535–541 (2005).

    CAS  PubMed  Google Scholar 

  47. Cottrell, E. C., Mercer, J. G. & Ozanne, S. E. Postnatal development of hypothalamic leptin receptors. Vitam. Horm. 82, 201–217 (2010).

    CAS  PubMed  Google Scholar 

  48. Ciriello, J. & Moreau, J. M. Systemic administration of leptin potentiates the response of neurons in the nucleus of the solitary tract to chemoreceptor activation in the rat. Neuroscience 229, 88–99 (2013).

    CAS  PubMed  Google Scholar 

  49. Bassi, M. et al. Central leptin replacement enhances chemorespiratory responses in leptin-deficient mice independent of changes in body weight. Pflug. Arch. 464, 145–153 (2012).

    CAS  Google Scholar 

  50. Carlo, A. S. et al. Leptin sensitivity in the developing rat hypothalamus. Endocrinology 148, 6073–6082 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Gauda would like to thank Dr. Seva Polotsky for the use of the whole-body plethysmograph in his laboratory and Ariel Mason for performing the pilot experiment that was done at Johns Hopkins in 2016, and Ms. Sonia Dos Santos for proof-reading the final draft.

Funding

Supported by the Women’s Auxiliary Chair in Neonatology at The Hospital for Sick Children.

Author information

Authors and Affiliations

Authors

Contributions

L.T.-H.; E.B.G., J.B., G.M.: Substantial contributions to conception and design, acquisition of data, analysis and interpretation of data. Drafting the article or revising it critically for important intellectual content and final approval of the version to be published. R.P., E.P., J.I.: Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data. H.W., G.B., A.P., N.I.: Substantial contributions to acquisition and analysis of data.

Corresponding author

Correspondence to Liran Tamir-Hostovsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamir-Hostovsky, L., Ivanovska, J., Parajón, E. et al. Maturational effect of leptin on CO2 chemosensitivity in newborn rats. Pediatr Res 94, 971–978 (2023). https://doi.org/10.1038/s41390-023-02604-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-023-02604-3

Search

Quick links