Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Basic Science Article
  • Published:

Metabolomic profiling of intrauterine growth-restricted preterm infants: a matched case–control study

Abstract

Background

The biochemical variations occurring in intrauterine growth restriction (IUGR), when a fetus is unable to achieve its genetically determined potential, are not fully understood. The aim of this study is to compare the urinary metabolomic profile between IUGR and non-IUGR very preterm infants to investigate the biochemical adaptations of neonates affected by early-onset-restricted intrauterine growth.

Methods

Neonates born <32 weeks of gestation admitted to neonatal intensive care unit (NICU) were enrolled in this prospective matched case–control study. IUGR was diagnosed by an obstetric ultra-sonographer and all relevant clinical data during NICU stay were captured. For each subject, a urine sample was collected within 48 h of life and underwent untargeted metabolomic analysis using mass spectrometry ultra-performance liquid chromatography. Data were analyzed using multivariate and univariate statistical analyses.

Results

Among 83 enrolled infants, 15 IUGR neonates were matched with 19 non-IUGR controls. Untargeted metabolomic revealed evident clustering of IUGR neonates versus controls showing derangements of pathways related to tryptophan and histidine metabolism and aminoacyl-tRNA and steroid hormones biosynthesis.

Conclusions

Neonates with IUGR showed a distinctive urinary metabolic profile at birth. Although results are preliminary, metabolomics is proving to be a promising tool to explore biochemical pathways involved in this disease.

Impact

  • Very preterm infants with intrauterine growth restriction (IUGR) have a distinctive urinary metabolic profile at birth.

  • Metabolism of glucocorticoids, sexual hormones biosynthesis, tryptophan-kynurenine, and methionine-cysteine pathways seem to operate differently in this sub-group of neonates.

  • This is the first metabolomic study investigating adaptations exclusively in extremely and very preterm infants affected by early-onset IUGR.

  • New knowledge on metabolic derangements in IUGR may pave the ways to further, more tailored research from a perspective of personalized medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chromatographic profile of the pool of the analyzed urine samples.
Fig. 2: Over-representation pathway analysis.
Fig. 3: Scheme representing the metabolites involved in the tryptophan metabolism.
Fig. 4: Scheme representing the metabolites involved in the steroid hormone biosynthesis.

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).

    Article  PubMed  Google Scholar 

  2. Crump, C., Sundquist, J., Winkleby, M. A. & Sundquist, K. Gestational age at birth and mortality from infancy into mid-adulthood: a national cohort study. Lancet Child Adolesc. Health 3, 408–417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Deter, R. L. et al. Individualized growth assessment: conceptual framework and practical implementation for the evaluation of fetal growth and neonatal growth outcome. Am. J. Obstet. Gynecol. 218, 656–678 (2018).

    Article  Google Scholar 

  4. Nardozza, L. M. et al. Fetal growth restriction: current knowledge. Arch. Gynecol. Obstet. 295, 1061–1077 (2017).

    Article  PubMed  Google Scholar 

  5. Gordijn, S. J., Beune, I. M. & Ganzevoort, W. Building consensus and standards in fetal growth restriction studies. Best. Pract. Res. Clin. Obstet. Gynaecol. 49, 117–126 (2018).

    Article  PubMed  Google Scholar 

  6. Carducci, B. & Bhutta, Z. A. Care of the growth-restricted newborn. Best. Pract. Res. Clin. Obstet. Gynaecol. 49, 103–116 (2018).

    Article  PubMed  Google Scholar 

  7. Longo, S. et al. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J. Matern. Fetal Neonatal Med. 26, 222–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Moco, S. et al. Metabolomics perspectives in pediatric research. Pediatr. Res. 73, 570–576 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Mayneris-Perxachs, J. & Swann, J. R. Metabolic phenotyping of malnutrition during the first 1000 days of life. Eur. J. Nutr. 58, 909–930 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Souza, R. T. et al. Metabolomics applied to maternal and perinatal health: a review of new frontiers with a translation potential. Clin. (Sao Paulo) 74, e894 (2019).

    Article  Google Scholar 

  11. Priante, E. et al. Intrauterine growth restriction: new insight from the metabolomic approach. Metabolites 9, 267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Leite, D. F. B. & Cecatti, J. G. New approaches to fetal growth restriction: the time for metabolomics has come. Rev. Bras. Ginecol. Obstet. 41, 454–462 (2019).

    Article  PubMed  Google Scholar 

  13. Leite, D. F. B. et al. Examining the predictive accuracy of metabolomics for small-for-gestational-age babies: a systematic review. BMJ Open 9, e031238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dessì, A., Marincola, F. C. & Fanos, V. Metabolomics and the great obstetrical syndromes-GDM, PET, and IUGR. Best. Pract. Res. Clin. Obstet. Gynaecol. 29, 156–164 (2015).

    Article  PubMed  Google Scholar 

  15. Dessì, A. et al. Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J. Matern. Fetal Neonatal Med. 24, 35–39 (2011).

    Article  PubMed  Google Scholar 

  16. Segers, K., Declerck, S., Mangelings, D., Heyden, Y. V. & Eeckhaut, A. V. Analytical techniques for metabolomic studies: a review. Bioanalysis 11, 2297–2318 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Beale, D. J. et al. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 14, 152 (2018).

    Article  PubMed  Google Scholar 

  18. Carraro, S., Giordano, G., Reniero, F., Perilongo, G. & Baraldi, E. Metabolomics: a new frontier for research in pediatrics. J. Pediatr. 154, 638–644 (2009).

    Article  PubMed  Google Scholar 

  19. Bardanzellu, F. & Fanos, V. How could metabolomics change pediatric health? Ital. J. Pediatr. 46, 37 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fanos, V., Pintus, R. & Dessì, A. Clinical metabolomics in neonatology: from metabolites to diseases. Neonatology 113, 406–413 (2018).

    Article  PubMed  Google Scholar 

  21. Ryan, D. & Robards, K. Metabolomics: the greatest omics of them all? Anal. Chem. 78, 7954–7958 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kosmides, A. K., Kamisoglu, K., Calvano, S. E., Corbett, S. A. & Androulakis, I. P. Metabolomic fingerprinting: challenges and opportunities. Crit. Rev. Biomed. Eng. 41, 205–221 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pecks, U. et al. Mass spectrometric profiling of cord blood serum proteomes to distinguish infants with intrauterine growth restriction from those who are small for gestational age and from control individuals. Transl. Res. 164, 57–69 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Stocchero, M. et al. PLS2 in metabolomics. Metabolites 9, 51 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wishart, D. S. et al. HMDB 4.0—the Human Metabolome Database for 2018. Nucleic Acids Res. 46, 486–494 (2018).

    Article  Google Scholar 

  26. Guijas, C. et al. METLIN: a technology platform for identifying knowns and unknowns. Anal. Chem. 90, 3156–3164 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sumner, L. W., Urbanczyk-Wochniak, E. & Broeckling, C. D. Metabolomics data analysis, visualization, and integration. Methods Mol. Biol. 406, 409–436 (2007).

    CAS  PubMed  Google Scholar 

  28. Comai, S., Bertazzo, A., Brughera, M. & Crotti, S. Tryptophan in health and disease. Adv. Clin. Chem. 95, 165–218 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Kudo, Y. & Boyd, C. A. Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J. Physiol. 531, 405–416 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Regnault, T. R., de Vrijer, B. & Battaglia, F. C. Transport and metabolism of amino acids in placenta. Endocrine 19, 23–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Favretto, D. et al. Cord blood metabolomic profiling in intrauterine growth restriction. Anal. Bioanal. Chem. 402, 1109–1121 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Hernandez-Rodriguez, J., Meneses, L., Herrera, R. & Manjarrez, G. Another abnormal trait in the serotonin metabolism path in intrauterine growth-restricted infants. Neonatology 95, 125–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Cosmi, E. et al. Selective intrauterine growth restriction in monochorionic twin pregnancies: Markers of endothelial damage and metabolomic profile. Twin Res. Hum. Genet. 16, 816–826 (2013).

    Article  PubMed  Google Scholar 

  34. Moros, G. et al. Insights into intrauterine growth restriction based on maternal and umbilical cord blood metabolomics. Sci. Rep. 11, 7824 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murthi, P., Wallace, E. M. & Walker, D. W. Altered placental tryptophan metabolic pathway in human fetal growth restriction. Placenta 52, 62–70 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Bahado-Singh, R. O. et al. Artificial intelligence and the analysis of multi-platform metabolomics data for the detection of intrauterine growth restriction. PLoS One 14, e0214121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, L. et al. Metabolic biomarkers of monochorionic twins complicated with selective intrauterine growth restriction in cord plasma and placental tissue. Sci. Rep. 8, 15914 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liu, J., Chen, X. X., Li, X. W., Fu, W. & Zhang, W. Q. Metabolomic research on newborn infants with intrauterine growth restriction. Medicine (Baltimore) 95, e3564 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Horgan, R. P. et al. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies. Placenta 31, 893–901 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Kalhan, S. C. One carbon metabolism in pregnancy: Impact on maternal, fetal and neonatal health. Mol. Cell Endocrinol. 435, 48–60 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kalhan, S. C. & Marczewski, S. E. Methionine, homocysteine, one carbon metabolism and fetal growth. Rev. Endocr. Metab. Disord. 13, 109–119 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Abd El-Wahed, M. A., El-Farghali, O. G., ElAbd, H. S. A., El-Desouky, E. D. & Hassan, S. M. Metabolic derangements in IUGR neonates detected at birth using UPLC-MS. Egypt. J. Med. Hum. Genet. 18, 281–287 (2017).

    Article  Google Scholar 

  43. Holeček, M. Histidine in health and disease: metabolism, physiological importance, and use as a supplement. Nutrients 12, 848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brownlee, K. G. et al. Catabolic effect of dexamethasone in the preterm baby. Arch. Dis. Child. 67, 1–4 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Perrone, S., Laschi, E. & Buonocore, G. Biomarkers of oxidative stress in the fetus and in the newborn. Free Radic. Biol. Med. 142, 23–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Rashid, C. S., Bansal, A. & Simmons, R. A. Oxidative stress, intrauterine growth restriction, and developmental programming of type 2 diabetes. Physiology (Bethesda) 33, 348–359 (2018).

    CAS  PubMed  Google Scholar 

  47. Cong, J. et al. Effects of dietary supplementation with carnosine on growth performance, meat quality, antioxidant capacity and muscle fiber characteristics in broiler chickens. J. Sci. Food Agric. 97, 3733–3741 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, L. et al. Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model. Eur. J. Pharmacol. 667, 202–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Alcántara-Alonso, V., Panetta, P., de Gortari, P. & Grammatopoulos, D. K. Corticotropin-releasing hormone as the homeostatic rheostat of feto-maternal symbiosis and developmental programming in utero and neonatal life. Front. Endocrinol. (Lausanne) 8, 161 (2017).

    Article  PubMed  Google Scholar 

  50. Wadhwa, P. D. et al. Placental corticotropin-releasing hormone (CRH), spontaneous preterm birth, and fetal growth restriction: a prospective investigation. Am. J. Obstet. Gynecol. 191, 1063–1069 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Johnston, R. C. et al. Associations between placental corticotropin-releasing hormone, maternal cortisol, and birth outcomes, based on placental histopathology. Reprod. Sci. 27, 1803–1811 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, P., Wang, W., Zuo, R. & Sun, K. Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life. Cell Mol. Life Sci. 76, 13–26 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Economides, D., Nicolaides, K. & Campbell, S. Metabolic and endocrine findings in appropriate and small for gestational age fetuses. J. Perinat. Med. 19, 97–105 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. Su, Q. et al. Maternal stress in gestation: birth outcomes and stress-related hormone response of the neonates. Pediatr. Neonatol. 56, 376–381 (2015).

    Article  PubMed  Google Scholar 

  55. Nixon, M., Upreti, R. & Andrew, R. 5α-Reduced glucocorticoids: a story of natural selection. J. Endocrinol. 212, 111–127 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Hennebert, O., Chalbot, S., Alran, S. & Morfin, R. Dehydroepiandrosterone 7α-hydroxylation in human tissues: possible interference with type 1 11β-hydroxysteroid dehydrogenase-mediated processes. J. Steroid Biochem. Mol. Biol. 104, 326–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Allvin, K., Ankarberg-Lindgren, C., Niklasson, A., Jacobsson, B. & Dahlgren, J. Altered umbilical sex steroids in preterm infants born small for gestational age. J. Matern. Fetal Neonatal Med. 33, 4164–4170 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Mansell, T. et al. The newborn metabolome: associations with gestational diabetes, sex, gestation, birth mode, and birth weight. Pediatr. Res. 91, 1864–1873 (2022).

  59. Scalabre, A. et al. Evolution of newborns' urinary metabolomic profiles according to age and growth. J. Proteome Res. 16, 3732–3740 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Ernst, M., Rogers, S. & Lausten-Thomsen, U. et al. Gestational age-dependent development of the neonatal metabolome. Pediatr. Res. 89, 1396–1404 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.P. contributed to study conception and design, acquisition, and interpretation of data and drafted the article. G.V. and E.B. contributed to study conception and design, interpretation of data, and critically reviewed the manuscript. M.S., G.G., and P.P. contributed to study conception and design, analysis, and interpretation of data, and critically reviewed the manuscript. L.B., S.V., and L.M. critically reviewed the manuscript. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Elena Priante.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent to participate

A written informed consent was collected from all parents/guardians before the enrollment of the neonates in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priante, E., Verlato, G., Stocchero, M. et al. Metabolomic profiling of intrauterine growth-restricted preterm infants: a matched case–control study. Pediatr Res 93, 1599–1608 (2023). https://doi.org/10.1038/s41390-022-02292-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41390-022-02292-5

This article is cited by

Search

Quick links