Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sensory-based interventions in the NICU: systematic review of effects on preterm brain development

Abstract

Background

Infants born preterm are known to be at risk for abnormal brain development and adverse neurobehavioral outcomes. To improve early neurodevelopment, several non-pharmacological interventions have been developed and implemented in the neonatal intensive care unit (NICU). Sensory-based interventions seem to improve short-term neurodevelopmental outcomes in the inherently stressful NICU environment. However, how this type of intervention affects brain development in the preterm population remains unclear.

Methods

A systematic review of the literature was conducted for published studies in the past 20 years reporting the effects of early, non-pharmacological, sensory-based interventions on the neonatal brain after preterm birth.

Results

Twelve randomized controlled trials (RCT) reporting short-term effects of auditory, tactile, and multisensory interventions were included after the screening of 1202 articles. Large heterogeneity was identified among studies in relation to both types of intervention and outcomes. Three areas of focus for sensory interventions were identified: auditory-based, tactile-based, and multisensory interventions.

Conclusions

Diversity in interventions and outcome measures challenges the possibility to perform an integrative synthesis of results and to translate these for evidence-based clinical practice. This review identifies gaps in the literature and methodological challenges for the implementation of RCTs of sensory interventions in the NICU.

Impact

  • This paper represents the first systematic review to investigate the effect of non-pharmacological, sensory-based interventions in the NICU on neonatal brain development.

  • Although reviewed RCTs present evidence on the impact of such interventions on the neonatal brain following preterm birth, it is not yet possible to formulate clear guidelines for clinical practice.

  • This review integrates existing literature on the effect of sensory-based interventions on the brain after preterm birth and identifies methodological challenges for the conduction of high-quality RCTs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PRISMA flow diagram.
Fig. 2: Risk of bias graph and summary across all of the included studies.

References

  1. 1.

    Liu, L. et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 388, 3027–3035 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Graven, S. N. & Browne, J. V. Auditory development in the fetus and infant. Newborn Infant Nurs. Rev. https://doi.org/10.1053/j.nainr.2008.10.010 (2008).

  3. 3.

    Keunen, K. et al. Brain tissue volumes in preterm infants: prematurity, perinatal risk factors and neurodevelopmental outcome: a systematic review. J. Matern. Neonatal Med. 25, 89–100 (2012).

    Article  Google Scholar 

  4. 4.

    Smyser, C. D. et al. Resting-state network complexity and magnitude are reduced in prematurely born infants. Cereb. Cortex 26, 322–333 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Dubois, J. et al. Mapping the early cortical folding process in the preterm newborn brain. Cereb. Cortex 18, 1444–1454 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Johnson, S. et al. Autism spectrum disorders in extremely preterm children. J. Pediatr. 156, 525–531.e2 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Montagna, A. & Nosarti, C. Socio-emotional development following very preterm birth: pathways to psychopathology. Front. Psychol. 7, 80 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Stene-larsen, K., Lang, A. M., Landolt, M. A., Latal, B. & Vollrath, M. E. Emotional and behavioral problems in late preterm and early term births: outcomes at child age 36 months. BMC Pediatr. https://doi.org/10.1186/s12887-016-0746-z, 1–7 (2016).

  9. 9.

    Pierrat, V. et al. Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks’ gestation in France in 2011: EPIPAGE-2 cohort study. BMJ 358, j3448 (2017).

  10. 10.

    Volpe, J. J. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 8, 110–124 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Rees, S. & Inder, T. Fetal and neonatal origins of altered brain development. Early Hum. Dev. 81, 753–761 (2005).

    PubMed  Article  Google Scholar 

  12. 12.

    Keunen, K. et al. Brain volumes at term-equivalent age in preterm infants: imaging biomarkers for neurodevelopmental outcome through early school age. J. Pediatr. 172, 88–95 (2016).

    PubMed  Article  Google Scholar 

  13. 13.

    Dubois, J. et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain 131, 2028–2041 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Ment, L. R., Hirtz, D. & Hüppi, P. S. Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol. 8, 1042–1055 (2009).

    PubMed  Article  Google Scholar 

  15. 15.

    Marlow, N. et al. No change in neurodevelopment at 11 years after extremely preterm birth. Arch. Dis. Child. Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2020-320650 (2021)

  16. 16.

    Alterman, N. et al. Gestational age at birth and child special educational needs: a UK representative birth cohort study. Arch. Dis. Child. Fetal Neonatal Ed. https://doi.org/10.1136/archdischild-2020-320213 (2021)

  17. 17.

    Bouyssi-Kobar, M. et al. Third trimester brain growth in preterm infants compared with in utero healthy fetuses. Pediatrics 138, e20161640 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Volpe, J. J. Dysmaturation of premature brain: importance, cellular mechanisms, and potential interventions. Pediatr. Neurol. 95, 42–66 (2019).

    PubMed  Article  Google Scholar 

  19. 19.

    Coviello, C. et al. Effects of early nutrition and growth on brain volumes, white matter microstructure and neurodevelopmental outcome in preterm newborns. Pediatr. Res. https://doi.org/10.1038/pr.2017.227, 1–32 (2017)

  20. 20.

    Kersbergen, K. J. et al. Longitudinal regional brain development and clinical risk factors in extremely preterm infants. J. Pediatr. https://doi.org/10.1016/j.jpeds.2016.08.024 (2016).

    Article  PubMed  Google Scholar 

  21. 21.

    Kersbergen, K. J. et al. Relation between clinical risk factors, early cortical changes, and neurodevelopmental outcome in preterm infants. Neuroimage 142, 301–310 (2016).

    PubMed  Article  Google Scholar 

  22. 22.

    Graven, S. N. & Browne, J. V. Sensory development in the fetus, neonate, and infant: introduction and overview. Newborn Infant Nurs. Rev. 8, 169–172 (2008).

    Article  Google Scholar 

  23. 23.

    Als, H., Duffy, F. & McAnulty, G. Early experience alters brain function and structure. Pediatrics 113, 846 (2004).

    PubMed  Article  Google Scholar 

  24. 24.

    Lickliter, R. The integrated development of sensory organization. Clin. Perinatol. 38, 591–603 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Lickliter, R. Atypical perinatal sensory stimulation and early perceptual development: insights from developmental psychobiology. J. Perinatol. 20, S45–S54 (2000).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Kramaric, K. et al. The effect of ambient noise in the NICU on cerebral oxygenation in preterm neonates on high fl ow oxygen therapy. Signa Vitae 13, 52–56 (2017).

    Article  Google Scholar 

  27. 27.

    Bartocci, M. et al. Cerebral hemodynamic response to unpleasant odors in the preterm newborn measured by near-infrared spectroscopy. Pediatr. Res. 50, 324–330 (2001).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Gressens, P., Rogido, M., Paindaveine, B. & Sola, A. The impact of neonatal intensive care practices on the developing brain. J. Pediatr. 140, 646–653 (2002).

    PubMed  Article  Google Scholar 

  29. 29.

    Pineda, R. G. et al. Alterations in brain structure and neurodevelopmental outcome in preterm infants hospitalized in different neonatal intensive care unit environments. J. Pediatr. 164, 52–60 (2014).

  30. 30.

    Smith, G. C. et al. NICU stress is associated with brain development in preterm infants. Ann. Neurol. 70, 541–549 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Aj, S. & Pinelli, J. Developmental care for promoting development and preventing morbidity in preterm infants (Review). Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD001814.pub2.www.cochranelibrary.com (2009).

  32. 32.

    Lubbe, W., Van Der Walt, C. S. J. & Klopper, H. C. Integrative literature review defining evidence-based neurodevelopmental supportive care of the preterm infant. J. Perinat. Neonat. Nurs. 26, 251–259 (2012).

    Article  Google Scholar 

  33. 33.

    Conde-Aguedelo, A. & Díaz-rossello, J. L. Kangaroo mother care to reduce morbidity and mortality in low birthweight infants (Review). Cochrane Database Syst. Rev., 1–149 https://doi.org/10.1002/14651858.CD002771.pub4.www.cochranelibrary.com (2016)

  34. 34.

    Morag, I. & Ohlsson, A. Cycled light in the intensive care unit for preterm and low birth weight infants. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD006982.pub4.www.cochranelibrary.com (2016).

  35. 35.

    Pineda, R. et al. Enhancing sensory experiences for very preterm infants in the NICU: an integrative review. J. Perinatol. 16, 1–10 (2016).

    Google Scholar 

  36. 36.

    van den Hoogen, A. et al. How to improve sleep in a neonatal intensive care unit: a systematic review. Early Hum. Dev. 113, 78–86 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Anderson, D. E. & Patel, A. D. Infants born preterm, stress, and neurodevelopment in the neonatal intensive care unit: might music have an impact? Dev. Med. Child Neurol. https://doi.org/10.1111/dmcn.13663 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Fumagalli, M. et al. From early stress to 12-month development in very preterm infants: preliminary findings on epigenetic mechanisms and brain growth. PLoS Med. 13, 1 (2018).

  39. 39.

    Montirosso, R. & Provenzi, L. Implications of epigenetics and stress regulation on research and developmental care of preterm infants. J. Obstet. Gynecol. Neonatal Nurs. 44, 174–182 (2015).

    PubMed  Article  Google Scholar 

  40. 40.

    Kentner, A. C., Scalia, S., Shin, J., Migliore, M. M. & Rondon-Ortiz, A. N. Targeted sensory enrichment interventions protect against behavioral and neuroendocrine consequences of early life stress. Psychoneuroendocrinology 98, 74–85 (2018).

    PubMed  Article  Google Scholar 

  41. 41.

    Als, H. et al. NIDCAP improves brain function and structure in preterm infants with severe intrauterine growth restriction. J. Perinatol. 32, 797–803 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Moher, D. et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, 7 (2009).

  43. 43.

    De Bijl-Marcus, K. A., Brouwer, A. J., De Vries, L. S. & Van Wezel-Meijler, G. The effect of head positioning and head tilting on the incidence of intraventricular hemorrhage in very preterm infants: a systematic review. Neonatology 111, 267–279 (2017).

    PubMed  Article  Google Scholar 

  44. 44.

    Romantsik, O., Calevo, M. G. & Bruschettini, M. Head midline position for preventing the occurrence or extension of germinal matrix-intraventricular hemorrhage in preterm infants. Cochrane Database Syst. Rev. 7, 7 (2017).

  45. 45.

    de Bijl-Marcus, K., Brouwer, A. J., De Vries, L. S., Groenendaal, F. & van Wezel-Meijler, G. Neonatal care bundles are associated with a reduction in the incidence of intraventricular haemorrhage in preterm infants: a multicentre cohort study. Arch. Dis. Child. Fetal Neonatal Ed. 105, 419–424 (2020).

    PubMed  Article  Google Scholar 

  46. 46.

    Ohlsson, A. & Jacobs, S. E. NIDCAP: a systematic review and meta-analyses of randomized controlled trials. Pediatrics 131, e881–e893 (2013).

    PubMed  Article  Google Scholar 

  47. 47.

    Sterne, J. et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366, l4898 (2019).

    PubMed  Article  Google Scholar 

  48. 48.

    Welch, M. G. et al. Electroencephalographic activity of preterm infants is increased by family nurture intervention: a randomized controlled trial in the NICU. Clin. Neurophysiol. 125, 675–684 (2014).

    PubMed  Article  Google Scholar 

  49. 49.

    Myers, M. M. et al. Family nurture intervention in preterm infants alters frontal cortical functional connectivity assessed by EEG coherence. Acta Paediatr. 104, 670–677 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Webb, A. R. et al. Mother’ s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc. Natl Acad Sci. USA 112, 3152–3157 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Ludington-Hoe, S. M. Neurophysiologic assessment of neonatal sleep organization: preliminary results of a randomized, controlled trial of skin contact with preterm infants. Pediatrics 117, e909–e923 (2006).

    PubMed  Article  Google Scholar 

  52. 52.

    Guzzetta, A. et al. The effects of preterm infant massage on brain electrical activity. Dev. Med. Child Neurol. 53, 46–51 (2011).

    PubMed  Article  Google Scholar 

  53. 53.

    Song, D. et al. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants. Pediatr. Res. 75, 85–92 (2014).

    PubMed  Article  Google Scholar 

  54. 54.

    Barlow, S. M. et al. Amplitude-integrated EEG and range-EEG modulation associated with pneumatic orocutaneous stimulation in preterm infants. J. Perinatol. 34, 213–219 (2014).

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Lordier, L. et al. Music in premature infants enhances high-level cognitive brain networks. Proc. Natl Acad. Sci. USA 116, 12103–12108 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Lordier, L. et al. Music processing in preterm and full-term newborns: a psychophysiological interaction (PPI) approach in neonatal fMRI. Neuroimage 185, 857–864 (2019).

    PubMed  Article  Google Scholar 

  57. 57.

    Welch, M. G. et al. Family nurture intervention in preterm infants increases early development of cortical activity and independence of regional power trajectories. Acta Paediatr. Int. J. Paediatr. 106, 1952–1960 (2017).

    Article  Google Scholar 

  58. 58.

    Haslbeck, F. B. et al. Creative music therapy to promote brain function and brain structure in preterm infants: a randomized controlled pilot study. Neuroimage. Clin. 25, 102171 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Sa de Almeida, J. et al. Music enhances structural maturation of emotional processing neural pathways in very preterm infants. Neuroimage 207, 116391 (2020).

    PubMed  Article  Google Scholar 

  60. 60.

    Doheny, L. et al. Exposure to biological maternal sounds improves cardiorespiratory regulation in extremely preterm infants. J. Matern. Neonatal Med. 25, 1591–1594 (2012).

    Article  Google Scholar 

  61. 61.

    Parga, J. J., Harper, R. M., Karp, H., Kesavan, K. & Zeltzer, L. Low frequency rhythmic womb-like sounds modify autonomic activity in premature neonates. J. Investig. Med. 64, 159–160 (2016).

    Google Scholar 

  62. 62.

    Sajjadian, N., Mohammadzadeh, M. & Alizadeh, P. Positive effects of low intensity recorded maternal voice on physiologic reactions in premature infants. Infant Behav. Dev. 46, 59–66 (2017).

    PubMed  Article  Google Scholar 

  63. 63.

    Filippa, M. et al. Systematic review of maternal voice interventions demonstrates increased stability in preterm infants. Acta Paediatr. 106, 1220–1229 (2017).

    PubMed  Article  Google Scholar 

  64. 64.

    Loewy, J., Stewart, K., Dassler, A. M., Telsey, A. & Homel, P. The effects of music therapy on vital signs, feeding, and sleep in premature infants. Pediatrics 131, 902–918 (2013).

    PubMed  Article  Google Scholar 

  65. 65.

    Wirth, L. et al. Effects of standardized acoustic stimulation in premature infants: a randomized controlled trial. J. Perinatol. 36, 486–492 (2016).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Olischar, M., Shoemark, H., Holton, T., Weninger, M. & Hunt, R. W. The influence of music on aEEG activity in neurologically healthy newborns ‡ 32 weeks’ gestational age. Acta Paediatr. 670–675 https://doi.org/10.1111/j.1651-2227.2011.02171.x (2011).

  67. 67.

    Shoemark, H., Hanson-Abromeit, D. & Stewart, L. Constructing optimal experience for the hospitalized newborn through neuro-based music therapy. Front. Hum. Neurosci. 9, 1–5 (2015).

    Article  Google Scholar 

  68. 68.

    Keunen, K., Counsell, S. J. & Benders, M. J. The emergence of functional architecture during early brain development. Neuroimage, 1–13 https://doi.org/10.1016/j.neuroimage.2017.01.047 (2017)

  69. 69.

    Hooks, B. M. & Chen, C. Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron 56, 312–326 (2007).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Tortora, D. et al. Early pain exposure influences functional brain connectivity in very preterm neonates. Front. Neurosci. 13, 1–11 (2019).

    Article  Google Scholar 

  71. 71.

    Gursul, D. et al. Stroking modulates noxious-evoked brain activity in human infants. Curr. Biol. 28, R1380–R1381 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    van Noort-van der Spek, I. L., Franken, M.-C. J. P. & Weisglas-Kuperus, N. Language functions in preterm-born children: a systematic review and meta-analysis. Pediatrics 129, 745–754 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  73. 73.

    Vandormael, C., Schoenhals, L., Hüppi, P. S., Filippa, M. & Tolsa, C. B. Language in preterm born children: atypical development and effects of early interventions on neuroplasticity. Neural Plast. 2019, 6873270 (2019).

  74. 74.

    Kuhn, P. et al. Infants born very preterm react to variations of the acoustic environment in their incubator from a minimum signal-to-noise ratio threshold of 5 to 10 dBA. Pediatr. Res. 71, 386–392 (2012).

  75. 75.

    Roffwarg, H. P., Muzio, J. N. & Dement, W. C. Ontogenetic development of the human sleep-dream cycle. Science 152, 604 LP–604619 (1966).

    Article  Google Scholar 

  76. 76.

    Blumberg, M. S., Lesku, J. A., Libourel, P., Schmidt, M. H. & Rattenborg, N. C. What is REM sleep? Curr. Biol. 30, R38–R49 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Cao, J., Herman, A. B., West, G. B., Poe, G. & Savage, V. M. Unraveling why we sleep: quantitative analysis reveals abrupt transition from neural reorganization to repair in early development. Sci. Adv. 6, eaba0398 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Tokariev, A. et al. Large-scale brain modes reorganize between infant sleep states and carry prognostic information for preterms. Nat. Commun. 10, 2619 (2019).

  79. 79.

    Bennet, L., Walker, D. W. & Horne, R. S. C. Waking up too early—the consequences of preterm birth on sleep development. J. Physiol. 596.23, 5687–5708 (2018).

    Article  CAS  Google Scholar 

  80. 80.

    De Wel, O. et al. Relationship between early functional and structural brain developments and brain injury in preterm infants. Cerebellum https://doi.org/10.1007/s12311-021-01232-z (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Ellingsen, D. M. et al. In touch with your emotions: oxytocin and touch change social impressions while others’ facial expressions can alter touch. Psychoneuroendocrinology 39, 11–20 (2014).

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Suvilehto, J. T. et al. Topography of social touching depends on emotional bonds between humans. Proc. Natl Acad. Sci. USA 112, 45 (2015).

  83. 83.

    Herstentein, M., Verkamp, J. M., Kerestes, A. M. & Holmes, R. M. The communicative functions of touch in humans, nonhuman primates, and rats: a review and synthesis of the empirical research. Genet. Soc. Gen. Psychol. Monogr. 132, 5–94 (2006).

    Article  Google Scholar 

  84. 84.

    Walker, S. C. & McGlone, F. P. The social brain: neurobiological basis of affiliative behaviours and psychological well-being. Neuropeptides 47, 379–393 (2013).

    CAS  PubMed  Article  Google Scholar 

  85. 85.

    Morrison, I., Löken, L. & Olausson, H. The skin as a social organ. Exp. Brain Res. 204, 305–314 (2010).

    PubMed  Article  Google Scholar 

  86. 86.

    Brauer, J., Xiao, Y., Poulain, T., Friederici, A. D. & Schirmer, A. Frequency of maternal touch predicts resting activity and connectivity of the developing social brain. Cereb. Cortex 26, 3544–3552 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Smith, J. R. Comforting touch in the very preterm hospitalized infant: an integrative review. Adv. Neonatal Care 12, 349–365 (2012).

    PubMed  Article  Google Scholar 

  88. 88.

    Boundy, E. O. et al. Kangaroo mother care and neonatal outcomes: a meta-analysis. Pediatrics 137, x–16 (2016).

    Article  Google Scholar 

  89. 89.

    Feldman, R., Weller, A., Sirota, L. & Eidelman, A. I. Skin-to-skin contact (kangaroo care) promotes self-regulation in premature infants: sleep–wake cyclicity, arousal modulation, and sustained exploration. Dev. Psychol. 38, 194–207 (2002).

    PubMed  Article  Google Scholar 

  90. 90.

    Korraa, A. A., El Nagger, A. A. I., Mohamed, R. A. E.-S. & Helmy, N. M. Impact of kangaroo mother care on cerebral blood flow of preterm infants. Ital. J. Pediatr. 40, 83 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Maitre, N. L. et al. The dual nature of early-life experience on somatosensory processing in the human infant brain. Curr. Biol. 27, 1048–1054 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Guzzetta, A. et al. Massage accelerates brain development and the maturation of visual function. J. Neurosci. 29, 6042–6051 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Meijer, E. et al. Functional connectivity in preterm infants derived from EEG coherence analysis. Eur. J. Paediatr. Neurol. 18, 780–789 (2014).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Scher, M. S., Steppe, D. A. & Banks, D. L. Prediction of lower developmental performances of healthy neonates by neonatal EEG-sleep measures. Pediatr. Neurol. 14, 137–144 (1996).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Gou, Z., Choudhury, N. & Benasich, A. A. Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behav. Brain Res. 220, 263–270 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Mundy, P., Mundy, P., Card, J. & Fox, N. EEG correlates of the development of infant joint attention skills. Dev. Psychobiol. 36, 325–338 (2016).

  97. 97.

    Weaver, I. C. G. et al. Epigenetic programming by maternal behavior. Nat. Neurosci. 7, 847–854 (2004).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Champagne, D. L. et al. Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. J. Neurosci. 28, 6037–6045 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Kommers, D., Oei, G., Chen, W., Feijs, L. & Bambang Oetomo, S. Suboptimal bonding impairs hormonal, epigenetic and neuronal development in preterm infants, but these impairments can be reversed. Acta Paediatr. 105, 738–751 (2016).

    CAS  PubMed  Article  Google Scholar 

  100. 100.

    Gunnar, M. R., Hostinar, C. E., Sanchez, M. M., Tottenham, N. & Sullivan, R. M. Parental buffering of fear and stress neurobiology: Reviewing parallels across rodent, monkey, and human models. Soc. Neurosci. 10, 474–478 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Reynolds, L. C. et al. Parental presence and holding in the neonatal intensive care unit and associations with early neurobehavior. J. Perinatol. 33, 636–641 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Milgrom, J. et al. Early sensitivity training for parents of preterm infants: impact on the developing brain. Pediatr. Res. 67, 330–335 (2010).

    PubMed  Article  Google Scholar 

  103. 103.

    Benders, M. J. et al. Early brain activity relates to subsequent brain growth in premature infants. Cereb. Cortex 25, 3014–3024 (2015).

    PubMed  Article  Google Scholar 

  104. 104.

    Tataranno, M. L. et al. Changes in brain morphology and microstructure in relation to early brain activity in extremely preterm infants. Pediatr. Res. 83, 834–842 (2018).

    PubMed  Article  Google Scholar 

Download references

Funding

This research did not receive any financial support from funding agencies in the public, commercial, or not-for-profit sectors. The publication was made possible by the ESPR.

Author information

Affiliations

Authors

Contributions

Substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data: M.I.B., J.D., T.M.d.J., and A.v.d.H. Drafting the article or revising it critically for important intellectual content; and final approval of the version to be published: all authors.

Corresponding author

Correspondence to Agnes van den Hoogen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Consent statement

Patient consent was not required.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beltrán, M.I., Dudink, J., de Jong, T.M. et al. Sensory-based interventions in the NICU: systematic review of effects on preterm brain development. Pediatr Res (2021). https://doi.org/10.1038/s41390-021-01718-w

Download citation

Search

Quick links