Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of kindlin-3 increases human melanoma aggressiveness through the collagen-activated tyrosine kinase receptor DDR1

Abstract

The role of the focal adhesion protein kindlin-3 as a tumor suppressor and its interaction mechanisms with extracellular matrix constitute a major field of investigation to better decipher tumor progression. Besides the well-described role of kindlin-3 in integrin activation, evidence regarding modulatory functions between melanoma cells and tumor microenvironment are lacking and data are needed to understand mechanisms driven by kindlin-3 inactivation. Here, we show that kindlin-3 inactivation through knockdown or somatic mutations increases BRAFV600mut melanoma cells oncogenic properties via collagen-related signaling by decreasing cell adhesion and enhancing proliferation and migration in vitro, and by promoting tumor growth in mice. Mechanistic analysis reveals that kindlin-3 interacts with the collagen-activated tyrosine kinase receptor DDR1 (Discoidin domain receptor 1) modulating its expression and its interaction with β1-integrin. Kindlin-3 knockdown or mutational inactivation disrupt DDR1/β1-integrin complex in vitro and in vivo and its loss improves the anti-proliferative effect of DDR1 inhibition. In agreement, kindlin-3 downregulation is associated with DDR1 over-expression in situ and linked to worse melanoma prognosis. Our study reveals a unique mechanism of action of kindlin-3 in the regulation of tumorigenesis mediated by the collagen-activated tyrosine kinase receptor DDR1 thus paving the way for innovative therapeutic targeting approaches in melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lack of kindlin-3 expression promotes proliferation and migration of BRAFV600mut melanoma cells on collagen I.
Fig. 2: Kindlin-3 mutations promote melanoma cells malignant properties.
Fig. 3: Loss of kindlin-3 modulates DDR1 expression and inhibits cells adhesion on collagen I.
Fig. 4: Kindlin-3 interacts with DDR1 and modulates DDR1/β1-integrin complexes on collagen I.
Fig. 5: Lack of kindlin-3 improves in part DDR1-IN-1 inhibitor effect through DDR1/FAK pathway.
Fig. 6: Kindlin-3 expression in human melanomas is associated with pathological characteristics and better survival, and inversely correlates with DDR1 expression.
Fig. 7: Schematic involvment of kindlin-3 inactivation in melanoma cells aggressiveness.

Similar content being viewed by others

Data availability

The data generated in this study are available within the article and its supplementary data files. Additional data is available on request from corresponding author on reasonable request.

References

  1. Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Bastholt L, et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics – Update 2019. Eur J Cancer. 2020;126:141–58.

    Article  CAS  PubMed  Google Scholar 

  2. Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Bastholt L, et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment – Update 2019. Eur J Cancer. 2020;126:159–77.

    Article  CAS  PubMed  Google Scholar 

  3. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell. 2015;161:1681–96.

    Article  Google Scholar 

  4. Ascierto PA, McArthur GA, Dréno B, Atkinson V, Liszkay G, Di Giacomo AM, et al. Cobimetinib combined with vemurafenib in advanced BRAF(V600)-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016;17:1248–60.

    Article  CAS  PubMed  Google Scholar 

  5. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet Lond Engl. 2015;386:444–51.

    Article  CAS  Google Scholar 

  6. Dummer R, Flaherty KT, Robert C, Arance A, de Groot JWB, Garbe C, et al. COLUMBUS 5-Year Update: A Randomized, Open-Label, Phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients With BRAF V600-Mutant Melanoma. J Clin Oncol J Am Soc Clin Oncol. 2022;40:4178–88.

    Article  CAS  Google Scholar 

  7. Eggermont AMM, Blank CU, Mandalà M, Long GV, Atkinson VG, Dalle S, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22:643–54.

    Article  PubMed  Google Scholar 

  8. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  9. Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L, Castillo Gutiérrez E, et al. Relatlimab and Nivolumab versus Nivolumab in Untreated Advanced Melanoma. N. Engl J Med. 2022;386:24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rizos H, Menzies AM, Pupo GM, Carlino MS, Fung C, Hyman J, et al. BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact. Clin Cancer Res J Am Assoc Cancer Res. 2014;20:1965–77.

    Article  CAS  Google Scholar 

  11. Johnson DB, Menzies AM, Zimmer L, Eroglu Z, Ye F, Zhao S, et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer Oxf Engl. 1990 2015;51:2792–9.

    CAS  Google Scholar 

  12. Lim SY, Menzies AM, Rizos H. Mechanisms and strategies to overcome resistance to molecularly targeted therapy for melanoma. Cancer. 2017;123:2118–29.

    Article  CAS  PubMed  Google Scholar 

  13. Huang AC, Zappasodi R. A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance. Nat Immunol. 2022;23:660–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Siroy AE, Boland GM, Milton DR, Roszik J, Frankian S, Malke J, et al. Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol. 2015;135:508–15.

    Article  CAS  PubMed  Google Scholar 

  15. Miraflor AP, de Abreu FB, Peterson JD, Turner SA, Amos CI, Tsongalis GJ, et al. Somatic mutation analysis in melanoma using targeted next generation sequencing. Exp Mol Pathol. 2017;103:172–7.

    Article  CAS  PubMed  Google Scholar 

  16. Louveau B, Jouenne F, Têtu P, Sadoux A, Gruber A, Lopes E, et al. A melanoma-tailored next-generation sequencing panel coupled with a comprehensive analysis to improve routine melanoma genotyping. Target Oncol. 2020;15:759–71.

    Article  PubMed  Google Scholar 

  17. Guo J, Carvajal RD, Dummer R, Hauschild A, Daud A, Bastian BC, et al. Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial. Ann Oncol J Eur Soc Med Oncol 2017;28:1380–7.

    Article  CAS  Google Scholar 

  18. Delyon J, Chevret S, Jouary T, Dalac S, Dalle S, Guillot B, et al. STAT3 Mediates Nilotinib Response in KIT-Altered Melanoma: A Phase II Multicenter Trial of the French Skin Cancer Network. J Invest Dermatol. 2018;138:58–67.

    Article  CAS  PubMed  Google Scholar 

  19. Drilon A, Laetsch TW, Kummar S, DuBois SG, Lassen UN, Demetri GD, et al. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl J Med. 2018;378:731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Doebele RC, Drilon A, Paz-Ares L, Siena S, Shaw AT, Farago AF, et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1-2 trials. Lancet Oncol Févr. 2020;21:271–82.

    Article  CAS  Google Scholar 

  21. Lebbé C, Italiano A, Houédé N, Awada A, Aftimos P, Lesimple T, et al. Selective Oral MEK1/2 inhibitor pimasertib in metastatic melanoma: antitumor activity in a phase I, dose-escalation trial. Target Oncol. 2021;16:47–57.

    Article  PubMed  Google Scholar 

  22. Monaco KA, Delach S, Yuan J, Mishina Y, Fordjour P, Labrot E, et al. LXH254, a Potent and Selective ARAF-Sparing Inhibitor of BRAF and CRAF for the Treatment of MAPK-Driven Tumors. Clin Cancer Res J Am Assoc Cancer Res. 2021;27:2061–73.

    Article  CAS  Google Scholar 

  23. Louveau B, Resche-Rigon M, Lesimple T, Da Meda L, Pracht M, Baroudjian B, et al. Phase I-II open-label multicenter study of palbociclib + vemurafenib in BRAF V600MUT metastatic melanoma patients: uncovering CHEK2 as a major response mechanism. Clin Cancer Res J Am Assoc Cancer Res. 2021;27:3876–83.

    Article  CAS  Google Scholar 

  24. Ascierto PA, Bechter O, Wolter P, Lebbe C, Elez E, Miller WH, et al. A phase Ib/II dose-escalation study evaluating triple combination therapy with a BRAF (encorafenib), MEK (binimetinib), and CDK 4/6 (ribociclib) inhibitor in patients (Pts) with BRAF V600-mutant solid tumors and melanoma. J Clin Oncol. 2017;35:9518.

    Article  Google Scholar 

  25. Sussman TA, Wei W, Hobbs B, Diaz-Montero CM, Ni Y, Arbesman J, et al. A phase II trial of nivolumab in combination with talazoparib in unresectable or metastatic melanoma patients with mutations in BRCA or BRCAness. J Clin Oncol. 2020;38:TPS10082.

    Article  Google Scholar 

  26. Marzagalli M, Ebelt ND, Manuel ER. Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol. 2019;59:236–50.

    Article  CAS  PubMed  Google Scholar 

  27. Liu D, Yang X, Wu X. Tumor immune microenvironment characterization identifies prognosis and immunotherapy-related gene signatures in melanoma. Front Immunol. 2021;12:663495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun X, Wu B, Chiang HC, Deng H, Zhang X, Xiong W, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion. Nature. 2021;599:673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moser M, Legate KR, Zent R, Fässler R. The tail of integrins, talin, and kindlins. Science. 2009;324:895–9.

    Article  CAS  PubMed  Google Scholar 

  30. Calderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol. 2013;14:503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. J Biol Chem. 2020;295:11161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuijpers TW, van de Vijver E, Weterman MAJ, de Boer M, Tool ATJ, van den Berg TK, et al. LAD-1/variant syndrome is caused by mutations in FERMT3. Blood. 2009;113:4740–6.

    Article  CAS  PubMed  Google Scholar 

  33. Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S, et al. Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med. 2009;15:306–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bialkowska K, Sossey-Alaoui K, Pluskota E, Izem L, Qin J, Plow EF. Site-specific phosphorylation regulates the functions of kindlin-3 in a variety of cells. Life Sci Alliance. 2019;3:e201900594.

    Article  PubMed  Google Scholar 

  35. Tang Y, Nan N, Gui C, Zhou X, Jiang W, Zhou X. Blockage of PD-L1 by FERMT3-mediated Wnt/β-catenin signaling regulates chemoresistance and immune evasion of colorectal cancer cells. Clin Exp Pharm Physiol. 2022;49:988–97.

    Article  CAS  Google Scholar 

  36. Su X, Liu N, Wu W, Zhu Z, Xu Y, He F, et al. Comprehensive analysis of prognostic value and immune infiltration of kindlin family members in non-small cell lung cancer. BMC Med Genomics. 2021;14:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Djaafri I, Khayati F, Menashi S, Tost J, Podgorniak MP, Sadoux A, et al. A novel tumor suppressor function of Kindlin-3 in solid cancer. Oncotarget. 2014;5:8970–85.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Delyon J, Khayati F, Djaafri I, Podgorniak MP, Sadoux A, Setterblad N, et al. EMMPRIN regulates β1 integrin-mediated adhesion through Kindlin-3 in human melanoma cells. Exp Dermatol. 2015;24:443–8.

    Article  CAS  PubMed  Google Scholar 

  39. Feng C, Wee WK, Chen H, Ong LT, Qu J, Tan HF, et al. Expression of kindlin-3 in melanoma cells impedes cell migration and metastasis. Cell Adhes Migr. 2017;11:419–33.

    Article  CAS  Google Scholar 

  40. Bozdogan O, Guresci S, Öcalan D, Bozdogan N. Kindlin-3 and RASSF6 are probable biomarkers for predicting metastasis in cutaneous melanoma. Pol J Pathol J Pol Soc Pathol. 2021;72:237–44.

    Article  Google Scholar 

  41. Sossey-Alaoui K, Pluskota E, Davuluri G, Bialkowska K, Das M, Szpak D, et al. Kindlin-3 enhances breast cancer progression and metastasis by activating Twist-mediated angiogenesis. FASEB J Publ Fed Am Soc Exp Biol. 2014;28:2260–71.

    CAS  Google Scholar 

  42. Kato H, Honda S, Kashiwagi H, Nishiura N, Akuta K, Kokame K, et al. The critical role of kindlin-3 in intiation of physiological thrombus formation ~ analysis of kindlin-3 deficient patient. Blood. 2019;134:1062.

    Article  Google Scholar 

  43. Kerr BA, Shi L, Jinnah AH, Harris KS, Willey JS, Lennon DP, et al. Kindlin-3 mutation in mesenchymal stem cells results in enhanced chondrogenesis. Exp Cell Res. 2021;399:112456–112456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hidalgo-Carcedo C, Hooper S, Chaudhry SI, Williamson P, Harrington K, Leitinger B, et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol. 2011;13:49–58.

    Article  CAS  PubMed  Google Scholar 

  45. Ricard AS, Pain C, Daubos A, Ezzedine K, Lamrissi-Garcia I, Bibeyran A, et al. Study of CCN3 (NOV) and DDR1 in normal melanocytes and vitiligo skin. Exp Dermatol. 2012;21:411–6.

    Article  CAS  PubMed  Google Scholar 

  46. Valiathan RR, Marco M, Leitinger B, Kleer CG, Fridman R. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev. 2012;31:295–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moser M, Nieswandt B, Ussar S, Pozgajova M, Fässler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008;14:325–30.

    Article  CAS  PubMed  Google Scholar 

  48. Staudinger LA, Spano SJ, Lee W, Coelho N, Rajshankar D, Bendeck MP, et al. Interactions between the discoidin domain receptor 1 and β1 integrin regulate attachment to collagen. Biol Open. 2013;2:1148–59.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B. Discoidin domain receptors Promote α1β1- and α2β1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLOS ONE. 2012;7:e52209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reger de Moura C, Battistella M, Sohail A, Caudron A, Feugeas JP, Podgorniak MP, et al. Discoidin domain receptors: A promising target in melanoma. Pigment Cell Melanoma Res. 2019;32:697–707.

    Article  CAS  PubMed  Google Scholar 

  51. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Villanueva J, Herlyn M. Melanoma and the tumor microenvironment. Curr Oncol Rep. 2008;10:439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao Y, Zhou J, Li J. Discoidin domain receptors orchestrate cancer progression: A focus on cancer therapies. Cancer Sci. 2021;112:962–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kamohara H, Yamashiro S, Galligan C, Yoshimura T. Discoidin domain receptor 1 isoform-a (DDR1alpha) promotes migration of leukocytes in three-dimensional collagen lattices. FASEB J Publ Fed Am Soc Exp Biol 2001;15:2724–6.

    CAS  Google Scholar 

  55. Curat CA, Vogel WF. Discoidin domain receptor 1 controls growth and adhesion of mesangial cells. J Am Soc Nephrol JASN. 2002;13:2648–56.

    Article  CAS  PubMed  Google Scholar 

  56. Borza CM, Bolas G, Zhang X, Browning Monroe MB, Zhang MZ, Meiler J, et al. The Collagen Receptor Discoidin Domain Receptor 1b Enhances Integrin β1-Mediated Cell Migration by Interacting With Talin and Promoting Rac1 Activation. Front Cell Dev Biol. 2022;10:836797.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Orré T, Joly A, Karatas Z, Kastberger B, Cabriel C, Böttcher RT, et al. Molecular motion and tridimensional nanoscale localization of kindlin control integrin activation in focal adhesions. Nat Commun. 2021;12:3104.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shibue T, Weinberg RA. Integrin β1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci. 2009;106:10290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu W, Hall JE, Schaller MD. Focal adhesion kinase-regulated signaling events in human cancer. Biomol Concepts. 2012;3:225–40.

    Article  CAS  PubMed  Google Scholar 

  60. Kanteti R, Batra SK, Lennon FE, Salgia R. FAK and paxillin, two potential targets in pancreatic cancer. Oncotarget. 2016;7:31586–601.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Berestjuk I, Lecacheur M, Carminati A, Diazzi S, Rovera C, Prod’homme V, et al. Targeting Discoidin Domain Receptors DDR1 and DDR2 overcomes matrix-mediated tumor cell adaptation and tolerance to BRAF-targeted therapy in melanoma. EMBO Mol Med [Internet]. févr 2022;14. Disponible sur: https://pubmed-ncbi-nlm-nih-gov.proxy.insermbiblio.inist.fr/34957688/.

  62. Sala M, Allain N, Moreau M, Jabouille A, Henriet E, Abou-Hammoud A, et al. Discoidin Domain Receptor 2 orchestrates melanoma resistance combining phenotype switching and proliferation. Disponible sur: https://doi.org/10.1038/s41388-022-02266-1.

  63. Bayer SV, Grither WR, Brenot A, Hwang PY, Barcus CE, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. eLife. 2019;8:e45508.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim HG, Tan L, Weisberg EL, Liu F, Canning P, Choi HG, et al. Discovery of a potent and selective DDR1 receptor tyrosine kinase inhibitor. ACS Chem Biol. 2013;8:2145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang H, Wen Y, Wang L, Wang J, Chen H, Chen J, et al. DDR1 activation in macrophage promotes IPF by regulating NLRP3 inflammasome and macrophage reaction. Int Immunopharmacol. 2022;113:109294.

    Article  CAS  PubMed  Google Scholar 

  66. Kobelt D, Walther W, Stein US. Real-time cell migration monitoring to analyze drug synergism in the scratch assay using the IncuCyte System. Methods Mol Biol Clifton NJ. 2021;2294:133–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank technological platform of the Institut Recherche Saint-Louis (IRSL) and Dr Véronique Parietti and the coworkers of the Animal Experimental Facilities. The authors thank the participation of the oncodermatologists of the Dermatology Department of Saint-Louis Hospital, Paris.

Funding

This study was supported by the Institut National de la Santé et de la Recherche Médicale (INSERM), the Université Paris Cité and the Société Française de Dermatologie (SFD). BL was supported by La Fondation de l’Avenir (Bourse Legs Cancérologie). This work was supported by funding from the integrated cancer research center “SiRIC InsiTu : Insights into cancer : From inflammation to tumor” (grant number INCa-DGOS-INSERM-ITMO Cancer_18008).

Author information

Authors and Affiliations

Authors

Contributions

CL and SM designed and supervised the study; CRdM and BL performed the experiments, analyzed, interpreted the data and wrote the manuscript; AS performed genomic and RNA-seq experiments; YB performed immunohistochemistry analyses; FJ, PV, MB and ND provided material resources; ND, CL, SM and SM revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Samia Mourah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was conducted according to the guidelines of 2009 American Joint Committee on Cancer (AJCC). All patients signed written informed consent according to Helsinki guidelines and the study was approved by the INSERM institutional Review Board and Ethics Committee in Paris, France (IRB N°00006477). This study was approved by the Committee on the Ethics of Animal Experiments of the French Ministry of Agriculture (Permit N°B751008-22952).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reger De Moura, C., Louveau, B., Jouenne, F. et al. Inactivation of kindlin-3 increases human melanoma aggressiveness through the collagen-activated tyrosine kinase receptor DDR1. Oncogene (2024). https://doi.org/10.1038/s41388-024-03014-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-03014-3

Search

Quick links