Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNF126-mediated ubiquitination of FSP1 affects its subcellular localization and ferroptosis

Abstract

Medulloblastoma (MB) is a prevalent malignant brain tumor among children, which can be classified into four primary molecular subgroups. Group 3 MB (G3-MB) is known to be highly aggressive and associated with a poor prognosis, necessitating the development of novel and effective therapeutic interventions. Ferroptosis, a regulated form of cell death induced by lipid peroxidation, has been identified as a natural tumor suppression mechanism in various cancers. Nevertheless, the potential role of ferroptosis in the treatment of G3-MB remains unexplored. In this study, we demonstrate that RNF126 acts as an anti-ferroptotic gene by interacting with ferroptosis suppressor protein 1 (FSP1, also known as AIFM2) and ubiquitinating FSP1 at the 4KR-2 sites. Additionally, the deletion of RNF126 reduces the subcellular localization of FSP1 in the plasma membrane, resulting in an increase in the CoQ/CoQH2 ratio in G3-MB. The RNF126-FSP1-CoQ10 pathway plays a pivotal role in suppressing phospholipid peroxidation and ferroptosis both in vivo and in vitro. Clinically, RNF126 exhibited elevated expression in G3-MB and its overexpression was significantly associated with reduced patient survival. Our findings indicate that RNF126 regulates G3-MB sensitivity to ferroptosis by ubiquitinating FSP1, which provides new evidence for the potential G3-MB therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RNF126 regulates ferroptosis in G3-MB cells.
Fig. 2: RNF126 regulates ferroptosis sensitivity through altering membrane localization of FSP1.
Fig. 3: Identification of RNF126 as an E3 ubiquitin ligase that ubiquitinates FSP1.
Fig. 4: Mapping interacting domains in FSP1 and RNF126.
Fig. 5: Loss of RNF126 sensitizes medulloblastoma to ferroptosis in intracranial orthotopic tumor model.
Fig. 6: The expression level of RNF126 is significantly upregulated in G3-MB and correlates with unfavorable prognosis.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Holgado BL, Guerreiro Stucklin A, Garzia L, Daniels C, Taylor MD. Tailoring medulloblastoma treatment through genomics: making a change, one subgroup at a time. Annu Rev Genom Hum Genet. 2017;18:143–66.

    Article  CAS  Google Scholar 

  2. Kuzan-Fischer CM, Guerreiro Stucklin AS, Taylor MD. Advances in genomics explain medulloblastoma behavior at the bedside. Neurosurgery. 2017;64:21–6.

    Article  PubMed  Google Scholar 

  3. Northcott PA, Robinson GW, Kratz CP, Mabbott DJ, Pomeroy SL, Clifford SC, et al. Medulloblastoma. Nat Rev Dis Prim. 2019;5:11.

    Article  PubMed  Google Scholar 

  4. Thomas A, Noël G. Medulloblastoma: optimizing care with a multidisciplinary approach. J Multidiscip Healthc. 2019;12:335–47.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang J, Garancher A, Ramaswamy V, Wechsler-Reya RJ. Medulloblastoma: from molecular subgroups to molecular targeted therapies. Annu Rev Neurosci. 2018;41:207–32.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Conrad M, Pratt DA. The chemical basis of ferroptosis. Nat Chem Biol. 2019;15:1137–47.

    Article  CAS  PubMed  Google Scholar 

  8. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

    Article  CAS  PubMed  Google Scholar 

  11. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91.

    Article  CAS  PubMed  Google Scholar 

  12. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 2019;575:693–8.

    Article  CAS  PubMed  Google Scholar 

  15. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 2021;593:586–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Kang R, Kroemer G, Tang D. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18:280–96.

    Article  CAS  PubMed  Google Scholar 

  17. Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 2020;585:113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodriguez R, Schreiber SL, Conrad M. Persister cancer cells: Iron addiction and vulnerability to ferroptosis. Mol cell. 2022;82:728–40.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK, et al. CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature. 2019;569:270–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deng L, Meng T, Chen L, Wei W, Wang P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 2020;5:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang L, Chen X, Yang Q, Chen J, Huang Q, Yao L, et al. Broad spectrum deubiquitinase inhibition induces both apoptosis and ferroptosis in cancer cells. Front Oncol. 2020;10:949.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kamikubo K, Kato H, Kioka H, Yamazaki S, Tsukamoto O, Nishida Y, et al. A molecular triage process mediated by RING finger protein 126 and BCL2-associated athanogene 6 regulates degradation of G(0)/G(1) switch gene 2. J Biol Chem. 2019;294:14562–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benini M, Fortuni S, Condò I, Alfedi G, Malisan F, Toschi N, et al. E3 ligase RNF126 directly ubiquitinates frataxin, promoting its degradation: identification of a potential therapeutic target for Friedreich ataxia. Cell Rep. 2017;18:2007–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Castro IH, Ferrari A, Herrera MG, Noguera ME, Maso L, Benini M, et al. Biophysical characterisation of the recombinant human frataxin precursor. FEBS Open Bio. 2018;8:390–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yoshino S, Hara T, Nakaoka HJ, Kanamori A, Murakami Y, Seiki M, et al. The ERK signaling target RNF126 regulates anoikis resistance in cancer cells by changing the mitochondrial metabolic flux. Cell Discov. 2016;2:16019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang CY, Lee FL, Peng SF, Lin KH, Chen RJ, Ho TJ, et al. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF-IIR expression for hypertension-induced cardiomyocyte hypertrophy. J Cell Physiol. 2018;233:979–89.

    Article  CAS  PubMed  Google Scholar 

  27. Kim SY, Kim HJ, Kim HJ, Kim CH. Non-thermal plasma induces antileukemic effect through mTOR ubiquitination. Cells. 2020;9:595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhi X, Zhao D, Wang Z, Zhou Z, Wang C, Chen W, et al. E3 ubiquitin ligase RNF126 promotes cancer cell proliferation by targeting the tumor suppressor p21 for ubiquitin-mediated degradation. Cancer Res. 2013;73:385–94.

    Article  CAS  PubMed  Google Scholar 

  29. Rodrigo-Brenni MC, Gutierrez E, Hegde RS. Cytosolic quality control of mislocalized proteins requires RNF126 recruitment to Bag6. Mol cell. 2014;55:227–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ishida N, Nakagawa T, Iemura SI, Yasui A, Shima H, Katoh Y, et al. Ubiquitylation of Ku80 by RNF126 promotes completion of nonhomologous end joining-mediated DNA repair. Mol Cell Biol. 2017;37:e00347–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Migita K, Matsumoto S, Wakatsuki K, Kunishige T, Nakade H, Miyao S, et al. RNF126 as a marker of prognosis and proliferation of gastric cancer. Anticancer Res. 2020;40:1367–74.

    Article  PubMed  Google Scholar 

  32. Wang L, Wang X, Zhao Y, Niu W, Ma G, Yin W, et al. E3 ubiquitin ligase RNF126 regulates the progression of tongue cancer. Cancer Med. 2016;5:2043–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rees MG, Seashore-Ludlow B, Cheah JH, Adams DJ, Price EV, Gill S, et al. Correlating chemical sensitivity and basal gene expression reveals mechanism of action. Nat Chem Biol. 2016;12:109–16.

    Article  CAS  PubMed  Google Scholar 

  34. Ivanov DP, Coyle B, Walker DA, Grabowska AM. In vitro models of medulloblastoma: choosing the right tool for the job. J Biotechnol. 2016;236:10–25.

    Article  CAS  PubMed  Google Scholar 

  35. Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52.

    Article  CAS  PubMed  Google Scholar 

  36. Sato H, Shiiya A, Kimata M, Maebara K, Tamba M, Sakakura Y, et al. Redox imbalance in cystine/glutamate transporter-deficient mice. J Biol Chem. 2005;280:37423–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lo M, Ling V, Low C, Wang YZ, Gout PW. Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr Oncol. 2010;17:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sehm T, Fan Z, Ghoochani A, Rauh M, Engelhorn T, Minakaki G, et al. Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema. Oncotarget. 2016;7:36021–33.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Robe PA, Bentires-Alj M, Bonif M, Rogister B, Deprez M, Haddada H, et al. In vitro and in vivo activity of the nuclear factor-kappaB inhibitor sulfasalazine in human glioblastomas. Clin Cancer Res. 2004;10:5595–603.

    Article  CAS  PubMed  Google Scholar 

  40. Young O, Crotty T, O’Connell R, O’Sullivan J, Curran AJ. Levels of oxidative damage and lipid peroxidation in thyroid neoplasia. Head Neck. 2010;32:750–6.

    Article  PubMed  Google Scholar 

  41. Feng H, Stockwell BR. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 2018;16:e2006203.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 2017;551:247–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith CJ, McGlade CJ. The ubiquitin ligase RNF126 regulates the retrograde sorting of the cation-independent mannose 6-phosphate receptor. Exp Cell Res. 2014;320:219–32.

    Article  CAS  PubMed  Google Scholar 

  45. Smith CJ, Berry DM, McGlade CJ. The E3 ubiquitin ligases RNF126 and Rabring7 regulate endosomal sorting of the epidermal growth factor receptor. J Cell Sci. 2013;126:1366–80.

    CAS  PubMed  Google Scholar 

  46. Delker RK, Zhou Y, Strikoudis A, Stebbins CE, Papavasiliou FN. Solubility-based genetic screen identifies RING finger protein 126 as an E3 ligase for activation-induced cytidine deaminase. Proc Natl Acad Sci USA. 2013;110:1029–34.

    Article  CAS  PubMed  Google Scholar 

  47. Ge MK, Zhang N, Xia L, Zhang C, Dong SS, Li ZM, et al. FBXO22 degrades nuclear PTEN to promote tumorigenesis. Nat Commun. 2020;11:1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. d’Azzo A, Bongiovanni A, Nastasi T. E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic. 2005;6:429–41.

    Article  PubMed  Google Scholar 

  49. Yang WL, Wang J, Chan CH, Lee SW, Campos AD, Lamothe B, et al. The E3 ligase TRAF6 regulates Akt ubiquitination and activation. Science. 2009;325:1134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seykora JT, Myat MM, Allen LA, Ravetch JV, Aderem A. Molecular determinants of the myristoyl-electrostatic switch of MARCKS. J Biol Chem. 1996;271:18797–802.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang S, Gou S, Zhang Q, Yong X, Gan B, Jia D. FSP1 oxidizes NADPH to suppress ferroptosis. Cell Res. 2023;33:967–70.

    Article  CAS  PubMed  Google Scholar 

  52. Lv Y, Liang C, Sun Q, Zhu J, Xu H, Li X, et al. Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun. 2023;14:5933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity. 2010;33:765–76.

    Article  CAS  PubMed  Google Scholar 

  54. Meierhofer D, Wang X, Huang L, Kaiser P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J Proteome Res. 2008;7:4566–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 2009;137:133–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gong J, Liu Y, Wang W, He R, Xia Q, Chen L, et al. TRIM21-promoted FSP1 plasma membrane translocation confers ferroptosis resistance in human cancers. Adv Sci. 2023;10:e2302318.

    Article  Google Scholar 

  57. Liang Z, Yang J, Wang J, Tian S, Wang Q, Wang B, et al. Systematic analysis of MCM3 in pediatric medulloblastoma via multi-omics analysis. Front Mol Biosci. 2022;9:815260.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang Y, Shi J, Liu X, Feng L, Gong Z, Koppula P, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol. 2018;20:1181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yao H, Xie W, Dai Y, Liu Y, Gu W, Li J, et al. TRIM65 determines the fate of a novel subtype of pituitary neuroendocrine tumors via ubiquitination and degradation of TPIT. Neuro Oncol. 2022;24:1286–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang J, Sui Y, Li Q, Zhao Y, Dong X, Yang J, et al. Effective inhibition of MYC-amplified group 3 medulloblastoma by FACT-targeted curaxin drug CBL0137. Cell Death Dis. 2020;11:1029.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all participants and personnel involved in the study. We thank Professor Yujie Tang (Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China) for providing the D283 and D458 cells.

Funding

This research was supported by the National Key Research and Development Program of China (No. 2022YFC2705002 to JM), the National Natural Science Foundation of China (No. 8227102214 to JM) and Shanghai Leading Talent Program.

Author information

Authors and Affiliations

Authors

Contributions

WX, JW, and ST performed the experiments, and prepared figures and tables. WX and JM co-wrote the manuscript. LC coordinated and oversaw the bioinformatics data analysis. LC, ST, JY, ZL, BW, YZ, QW, and FJ analyzed the data, collected samples or clinical data, and prepared figures. LC and JW guided the animal experiments.

Corresponding author

Correspondence to Jie Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, W., Wang, J., Tian, S. et al. RNF126-mediated ubiquitination of FSP1 affects its subcellular localization and ferroptosis. Oncogene (2024). https://doi.org/10.1038/s41388-024-02949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41388-024-02949-x

Search

Quick links