Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DLGAP5 triggers proliferation and metastasis of bladder cancer by stabilizing E2F1 via USP11

Abstract

Bladder cancer (BLCA) is one of the most widespread malignancies worldwide, and displays significant tumor heterogeneity. Understanding the molecular mechanisms exploitable for treating aggressive BLCA represents a crucial objective. Despite the involvement of DLGAP5 in tumors, its precise molecular role in BLCA remains unclear. BLCA tissues exhibit a substantial increase in DLGAP5 expression compared with normal bladder tissues. This heightened DLGAP5 expression positively correlated with the tumor’s clinical stage and significantly affected prognosis negatively. Additionally, experiments conducted in vitro and in vivo revealed that alterations in DLGAP5 expression notably influence cell proliferation and migration. Mechanistically, the findings demonstrated that DLGAP5 was a direct binding partner of E2F1 and that DLGAP5 stabilized E2F1 by preventing the ubiquitination of E2F1 through USP11. Furthermore, as a pivotal transcription factor, E2F1 fosters the transcription of DLGAP5, establishing a positive feedback loop between DLGAP5 and E2F1 that accelerates BLCA development. In summary, this study identified DLGAP5 as an oncogene in BLCA. Our research unveils a novel oncogenic mechanism in BLCA and offers a potential target for both diagnosing and treating BLCA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DLGAP5 expression was correlated with the degree of malignancy and prognosis of BLCA.
Fig. 2: DLGAP5 promotes BLCA proliferation and metastasis in vitro and in vivo.
Fig. 3: DLGAP5 sustains E2F1 stability by interacting with E2F1.
Fig. 4: DLGAP5 maintains E2F1 protein stability through USP11-mediated deubiquitination.
Fig. 5: E2F1 promotes the transcription of DLGAP5.
Fig. 6: DLGAP5 regulates BLCA proliferation and migration through E2F1.
Fig. 7: Diagram of the molecular mechanism.

Similar content being viewed by others

Data availability

The RNA-seq data produced in this research have been submitted to the GEO database with the accession code GSE241523. In Supplementary Dataset 1, we provide the results of mass spectrometry assays carried out in this study. Data from the GSE76211, GSE13507, GSE32548, GSE214212 and GSE95303 cohorts (described in Supplementary Table 8) are publicly available in the GEO database and were used in this study. UCSC Xena (https://xenabrowser.net/) was used to acquire the TCGA-BLCA cohort data. The remaining data can be accessed in the article or Supplementary information.

References

  1. He W, Zhong G, Jiang N, Wang B, Fan X, Chen C, et al. Long noncoding RNA BLACAT2 promotes bladder cancer-associated lymphangiogenesis and lymphatic metastasis. J Clin Invest. 2018;128:861–75.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wang Y, Ju L, Wang G, Qian K, Jin W, Li M, et al. DNA polymerase POLD1 promotes proliferation and metastasis of bladder cancer by stabilizing MYC. Nat Commun. 2023;14:2421.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xiong Y, Ju L, Yuan L, Chen L, Wang G, Xu H, et al. KNSTRN promotes tumorigenesis and gemcitabine resistance by activating AKT in bladder cancer. Oncogene. 2021;40:1595–608.

    Article  CAS  PubMed  Google Scholar 

  4. Liu W, Shen D, Ju L, Zhang R, Du W, Jin W, et al. MYBL2 promotes proliferation and metastasis of bladder cancer through transactivation of CDCA3. Oncogene. 2022;41:4606–17.

    Article  CAS  PubMed  Google Scholar 

  5. Liu J, Liu Z, Zhang X, Gong T, Yao D. Examination of the expression and prognostic significance of DLGAPs in gastric cancer using the TCGA database and bioinformatic analysis. Mol Med Rep. 2018;18:5621–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong C, Huang S, Sun L, Yao J, Yan J, Yin X. DLGAP4 acts as an effective prognostic predictor for hepatocellular carcinoma and is closely related to tumour progression. Sci Rep. 2022;12:19775.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rasmussen AH, Rasmussen HB, Silahtaroglu A. The DLGAP family: neuronal expression, function and role in brain disorders. Mol Brain. 2017;10:43.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nomura N, Miyajima N, Sazuka T, Tanaka A, Kawarabayasi Y, Sato S, et al. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res. 1994;1:27–35.

    Article  CAS  PubMed  Google Scholar 

  9. Santarella RA, Koffa MD, Tittmann P, Gross H, Hoenger A. HURP wraps microtubule ends with an additional tubulin sheet that has a novel conformation of tubulin. J Mol Biol. 2007;365:1587–95.

    Article  CAS  PubMed  Google Scholar 

  10. Wong J, Fang G. HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J Cell Biol. 2006;173:879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu JM, Chen CT, Coumar MS, Lin WH, Chen ZJ, Hsu JT, et al. Aurora kinase inhibitors reveal mechanisms of HURP in nucleation of centrosomal and kinetochore microtubules. Proc Natl Acad Sci USA. 2013;110:E1779–1787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Branchi V, García SA, Radhakrishnan P, Győrffy B, Hissa B, Schneider M, et al. Prognostic value of DLGAP5 in colorectal cancer. Int J Colorectal Dis. 2019;34:1455–65.

    Article  PubMed  Google Scholar 

  13. Feng Y, Li F, Yan J, Guo X, Wang F, Shi H, et al. Pan-cancer analysis and experiments with cell lines reveal that the slightly elevated expression of DLGAP5 is involved in clear cell renal cell carcinoma progression. Life Sci. 2021;287:120056.

    Article  CAS  PubMed  Google Scholar 

  14. Liao W, Liu W, Yuan Q, Liu X, Ou Y, He S, et al. Silencing of DLGAP5 by siRNA significantly inhibits the proliferation and invasion of hepatocellular carcinoma cells. PLoS One. 2013;8:e80789.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, Liu Y, Tang S, Qin X, Li L, Zhou J, et al. Knockdown of DLGAP5 suppresses cell proliferation, induces G(2)/M phase arrest and apoptosis in ovarian cancer. Exp Ther Med. 2021;22:1245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ke MJ, Ji LD, Li YX. Bioinformatics analysis combined with experiments to explore potential prognostic factors for pancreatic cancer. Cancer Cell Int. 2020;20:382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hassan M, El Khattouti A, Ejaeidi A, Ma T, Day WA, Espinoza I, et al. Elevated expression of hepatoma up-regulated protein inhibits γ-irradiation-induced apoptosis of prostate cancer cells. J Cell Biochem. 2016;117:1308–18.

    Article  CAS  PubMed  Google Scholar 

  18. Kuo TC, Chang PY, Huang SF, Chou CK, Chao CC. Knockdown of HURP inhibits the proliferation of hepacellular carcinoma cells via downregulation of gankyrin and accumulation of p53. Biochem Pharmacol. 2012;83:758–68.

    Article  CAS  PubMed  Google Scholar 

  19. Zheng W, Zhao Y, Wang T, Zhao X, Tan Z. Identification of hub genes associated with bladder cancer using bioinformatic analyses. Transl Cancer Res. 2022;11:1330–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rao X, Cao H, Yu Q, Ou X, Deng R, Huang J. NEAT1/MALAT1/XIST/PKD-Hsa-Mir-101-3p-DLGAP5 axis as a novel diagnostic and prognostic biomarker associated with immune cell infiltration in bladder cancer. Front Genet. 2022;13:892535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang YL, Chiu AW, Huan SK, Wang YC, Ju JP, Lu CL. Prognostic significance of hepatoma-up-regulated protein expression in patients with urinary bladder transitional cell carcinoma. Anticancer Res. 2003;23:2729–33.

    PubMed  Google Scholar 

  22. Chiu AW, Huang YL, Huan SK, Wang YC, Ju JP, Chen MF, et al. Potential molecular marker for detecting transitional cell carcinoma. Urology. 2002;60:181–5.

    Article  PubMed  Google Scholar 

  23. Eissa S, Matboli M, Mansour A, Mohamed S, Awad N, Kotb YM. Evaluation of urinary HURP mRNA as a marker for detection of bladder cancer: relation to bilharziasis. Med Oncol. 2014;31:804.

    Article  PubMed  Google Scholar 

  24. Ginsberg D. E2F1 pathways to apoptosis. FEBS Lett. 2002;529:122–5.

    Article  CAS  PubMed  Google Scholar 

  25. Hou J, Huang P, Xu M, Wang H, Shao Y, Weng X, et al. NCAPG promotes the progression of glioblastoma by facilitating PARP1-mediated E2F1 transactivation. Neuro Oncol. 2023;25:2015–27.

    Article  PubMed  Google Scholar 

  26. Dimri GP, Itahana K, Acosta M, Campisi J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol Cell Biol. 2000;20:273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stevens C, La Thangue NB. The emerging role of E2F-1 in the DNA damage response and checkpoint control. DNA Repair (Amst). 2004;3:1071–9.

    Article  CAS  PubMed  Google Scholar 

  28. Franco J, Balaji U, Freinkman E, Witkiewicz AK, Knudsen ES. Metabolic reprogramming of pancreatic cancer mediated by CDK4/6 inhibition elicits unique vulnerabilities. Cell Rep. 2020;32:107793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olmez I, Brenneman B, Xiao A, Serbulea V, Benamar M, Zhang Y, et al. Combined CDK4/6 and mTOR inhibition is synergistic against glioblastoma via multiple mechanisms. Clin Cancer Res. 2017;23:6958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peart MJ, Poyurovsky MV, Kass EM, Urist M, Verschuren EW, Summers MK, et al. APC/C(Cdc20) targets E2F1 for degradation in prometaphase. Cell Cycle. 2010;9:3956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Budhavarapu VN, White ED, Mahanic CS, Chen L, Lin FT, Lin WC. Regulation of E2F1 by APC/C Cdh1 via K11 linkage-specific ubiquitin chain formation. Cell Cycle. 2012;11:2030–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marti A, Wirbelauer C, Scheffner M, Krek W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nat Cell Biol. 1999;1:14–19.

    Article  CAS  PubMed  Google Scholar 

  33. Ohta T, Xiong Y. Phosphorylation- and Skp1-independent in vitro ubiquitination of E2F1 by multiple ROC-cullin ligases. Cancer Res. 2001;61:1347–53.

    CAS  PubMed  Google Scholar 

  34. Dubrez L. Regulation of E2F1 transcription factor by ubiquitin conjugation. Int J Mol Sci. 2017; 18.

  35. Wang B, Ma A, Zhang L, Jin WL, Qian Y, Xu G, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun. 2015;6:8704.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahanic CS, Budhavarapu V, Graves JD, Li G, Lin WC. Regulation of E2 promoter binding factor 1 (E2F1) transcriptional activity through a deubiquitinating enzyme, UCH37. J Biol Chem. 2015;290:26508–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang D, Zhao J, Li S, Wei J, Nan L, Mallampalli RK, et al. Phosphorylated E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression and activate lung epithelial cells. J Mol Cell Biol. 2018;10:60–73.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng S, Wang G, Wang Y, Cai L, Qian K, Ju L, et al. Fatty acid oxidation inhibitor etomoxir suppresses tumor progression and induces cell cycle arrest via PPARγ-mediated pathway in bladder cancer. Clin Sci (Lond). 2019;133:1745–58.

    Article  CAS  PubMed  Google Scholar 

  39. Wang G, Cao R, Wang Y, Qian G, Dan HC, Jiang W, et al. Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway. Sci Rep. 2016;6:35783.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qiao L, Zhang Q, Sun Z, Liu Q, Wu Z, Hu W, et al. The E2F1/USP11 positive feedback loop promotes hepatocellular carcinoma metastasis and inhibits autophagy by activating ERK/mTOR pathway. Cancer Lett. 2021;514:63–78.

    Article  CAS  PubMed  Google Scholar 

  41. Kassab A, Gupta I, Moustafa AA. Role of E2F transcription factor in oral cancer: recent insight and advancements. Semin Cancer Biol. 2023;92:28–41.

    Article  CAS  PubMed  Google Scholar 

  42. Wang G, Zhang M, Zhang Y, Xie Y, Zou J, Zhong J, et al. NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression. Clin Transl Med. 2022;12:e738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yu CT, Hsu JM, Lee YC, Tsou AP, Chou CK, Huang CY. Phosphorylation and stabilization of HURP by Aurora-A: implication of HURP as a transforming target of Aurora-A. Mol Cell Biol. 2005;25:5789–5800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Q, Chen Y, Feng H, Zhang B, Wang H. Prognostic and predictive value of HURP in non‑small cell lung cancer. Oncol Rep. 2018;39:1682–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Espinoza I, Sakiyama MJ, Ma T, Fair L, Zhou X, Hassan M, et al. Hypoxia on the expression of hepatoma upregulated protein in prostate cancer cells. Front Oncol. 2016;6:144.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tsou AP, Yang CW, Huang CY, Yu RC, Lee YC, Chang CW, et al. Identification of a novel cell cycle regulated gene, HURP, overexpressed in human hepatocellular carcinoma. Oncogene. 2003;22:298–307.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang L, He M, Zhu W, Lv X, Zhao Y, Yan Y, et al. Identification of a panel of mitotic spindle-related genes as a signature predicting survival in lung adenocarcinoma. J Cell Physiol. 2020;235:4361–75.

    Article  CAS  PubMed  Google Scholar 

  48. Hewit K, Sandilands E, Martinez RS, James D, Leung HY, Bryant DM, et al. A functional genomics screen reveals a strong synergistic effect between docetaxel and the mitotic gene DLGAP5 that is mediated by the androgen receptor. Cell Death Dis. 2018;9:1069.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tsantoulis PK, Gorgoulis VG. Involvement of E2F transcription factor family in cancer. Eur J Cancer. 2005;41:2403–14.

    Article  CAS  PubMed  Google Scholar 

  50. Pützer BM. E2F1 death pathways as targets for cancer therapy. J Cell Mol Med. 2007;11:239–51.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Logotheti S, Marquardt S, Gupta SK, Richter C, Edelhäuser BAH, Engelmann D, et al. LncRNA-SLC16A1-AS1 induces metabolic reprogramming during Bladder Cancer progression as target and co-activator of E2F1. Theranostics. 2020;10:9620–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ren Z, Kang W, Wang L, Sun B, Ma J, Zheng C, et al. E2F1 renders prostate cancer cell resistant to ICAM-1 mediated antitumor immunity by NF-κB modulation. Mol Cancer. 2014;13:84.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lee SR, Roh YG, Kim SK, Lee JS, Seol SY, Lee HH, et al. Activation of EZH2 and SUZ12 regulated by E2F1 predicts the disease progression and aggressive characteristics of bladder cancer. Clin Cancer Res. 2015;21:5391–403.

    Article  CAS  PubMed  Google Scholar 

  54. Peng YP, Zhu Y, Yin LD, Zhang JJ, Wei JS, Liu X, et al. PEG10 overexpression induced by E2F-1 promotes cell proliferation, migration, and invasion in pancreatic cancer. J Exp Clin Cancer Res. 2017;36:30.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol. 2002;14:684–91.

    Article  CAS  PubMed  Google Scholar 

  56. Kowalik TF, DeGregori J, Schwarz JK, Nevins JR. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J Virol. 1995;69:2491–2500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hsieh JK, Yap D, O’Connor DJ, Fogal V, Fallis L, Chan F, et al. Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage. Mol Cell Biol. 2002;22:78–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu X, Levine AJ. p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci USA. 1994;91:3602–6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nahle Z, Polakoff J, Davuluri RV, McCurrach ME, Jacobson MD, Narita M, et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol. 2002;4:859–64.

    Article  CAS  PubMed  Google Scholar 

  60. Chen J, Gong C, Mao H, Li Z, Fang Z, Chen Q, et al. E2F1/SP3/STAT6 axis is required for IL-4-induced epithelial-mesenchymal transition of colorectal cancer cells. Int J Oncol. 2018;53:567–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang D, Yang XJ, Luo QD, Xue L, Chong T. Transcription factor p53-mediated activation of miR-519d-3p and downregulation of E2F1 attenuates prostate cancer growth and metastasis. Cancer Gene Ther. 2022;29:1001–11.

    Article  CAS  PubMed  Google Scholar 

  62. Liang YX, Lu JM, Mo RJ, He HC, Xie J, Jiang FN, et al. E2F1 promotes tumor cell invasion and migration through regulating CD147 in prostate cancer. Int J Oncol. 2016;48:1650–8.

    Article  CAS  PubMed  Google Scholar 

  63. Sun H, Ou B, Zhao S, Liu X, Song L, Liu X, et al. USP11 promotes growth and metastasis of colorectal cancer via PPP1CA-mediated activation of ERK/MAPK signaling pathway. EBioMedicine. 2019;48:236–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang YY, Zhang CM, Dai YB, Lin JG, Lin N, Huang ZX, et al. USP11 facilitates colorectal cancer proliferation and metastasis by regulating IGF2BP3 stability. Am J Transl Res. 2021;13:480–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou Z, Luo A, Shrivastava I, He M, Huang Y, Bahar I, et al. Regulation of XIAP turnover reveals a role for USP11 in promotion of tumorigenesis. EBioMedicine. 2017;15:48–61.

    Article  PubMed  Google Scholar 

  66. Garcia DA, Baek C, Estrada MV, Tysl T, Bennett EJ, Yang J, et al. USP11 enhances TGFβ-induced epithelial-mesenchymal plasticity and human breast cancer metastasis. Mol Cancer Res. 2018;16:1172–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Yuruo Chen for exceptional assistance in editing the diagram. This work was supported by the National Natural Science Foundation of China (82172985), Research Fund of Zhongnan Hospital of Wuhan University (SWYBK01 and SWYBK02), and Fundamental Research Funds for the Central Universities (2042022dx0003). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FZ, YX, LJ and XW conceived and designed the study. FZ, ZD, DS, YX, GW and KQ performed the analysis procedures. FZ, ZD, DS, YX, LJ, and XW analyzed the results. YX, ZD, DS, M.Lu, M.Li, JY, and LJ contributed analysis tools. FZ, ZD, DS, YX, LJ, and XW contributed to the writing of the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lingao Ju or Xinghuan Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, F., Deng, Z., Shen, D. et al. DLGAP5 triggers proliferation and metastasis of bladder cancer by stabilizing E2F1 via USP11. Oncogene 43, 594–607 (2024). https://doi.org/10.1038/s41388-023-02932-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02932-y

Search

Quick links