Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetically-engineered mouse models of small cell lung cancer: the next generation

Abstract

Small cell lung cancer (SCLC) remains the most fatal form of lung cancer, with patients in dire need of new and effective therapeutic approaches. Modeling SCLC in an immunocompetent host is essential for understanding SCLC pathogenesis and ultimately discovering and testing new experimental therapeutic strategies. Human SCLC is characterized by near universal genetic loss of the RB1 and TP53 tumor suppressor genes. Twenty years ago, the first genetically-engineered mouse model (GEMM) of SCLC was generated using conditional deletion of both Rb1 and Trp53 in the lungs of adult mice. Since then, several other GEMMs of SCLC have been developed coupling genomic alterations found in human SCLC with Rb1 and Trp53 deletion. Here we summarize how GEMMs of SCLC have contributed significantly to our understanding of the disease in the past two decades. We also review recent advances in modeling SCLC in mice that allow investigators to bypass limitations of the previous generation of GEMMs while studying new genes of interest in SCLC. In particular, CRISPR/Cas9-mediated somatic gene editing can accelerate how new genes of interest are functionally interrogated in SCLC tumorigenesis. Notably, the development of allograft models and precancerous precursor models from SCLC GEMMs provides complementary approaches to GEMMs to study tumor cell-immune microenvironment interactions and test new therapeutic strategies to enhance response to immunotherapy. Ultimately, the new generation of SCLC models can accelerate research and help develop new therapeutic strategies for SCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Frequently used SCLC GEMMs developed using classical mouse genetics.
Fig. 2: Approaches to make the “Next Generation” of SCLC GEMMs using CRISPR/Cas9 somatic engineering.
Fig. 3: Approaches to generate immunocompetent syngeneic mouse models of SCLC.

Similar content being viewed by others

References

  1. Kalemkerian GP, Akerley W, Bogner P, Borghaei H, Chow LQ, Downey RJ, et al. Small cell lung cancer. J Natl Compr Canc Netw. 2013;11:78–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Prim. 2021;7:3.

    Article  PubMed  Google Scholar 

  3. Sabari JK, Lok BH, Laird JH, Poirier JT, Rudin CM. Unravelling the biology of SCLC: implications for therapy. Nat Rev Clin Oncol. 2017;14:549–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. 2021;398:535–54.

    Article  PubMed  Google Scholar 

  5. Drapkin BJ, George J, Christensen CL, Mino-Kenudson M, Dries R, Sundaresan T, et al. Genomic and functional fidelity of small cell lung cancer patient-derived xenografts. Cancer Discov. 2018;8:600–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farago AF, Yeap BY, Stanzione M, Hung YP, Heist RS, Marcoux JP, et al. Combination olaparib and temozolomide in relapsed small-cell lung cancer. Cancer Discov. 2019;9:1372–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carter L, Rothwell DG, Mesquita B, Smowton C, Leong HS, Fernandez-Gutierrez F, et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med. 2017;23:114–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20:897–903.

    Article  CAS  PubMed  Google Scholar 

  9. Rudin CM, Poirier JT, Byers LA, Dive C, Dowlati A, George J, et al. Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data. Nat Rev Cancer. 2019;19:289–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gay CM, Stewart CA, Park EM, Diao L, Groves SM, Heeke S, et al. Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell. 2021;39:346–60.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Owonikoko TK, Dwivedi B, Chen Z, Zhang C, Barwick B, Ernani V, et al. YAP1 expression in SCLC defines a distinct subtype with T-cell-inflamed phenotype. J Thorac Oncol. 2021;16:464–76.

    Article  CAS  PubMed  Google Scholar 

  12. Simpson KL, Stoney R, Frese KK, Simms N, Rowe W, Pearce SP, et al. A biobank of small cell lung cancer CDX models elucidates inter- and intratumoral phenotypic heterogeneity. Nat Cancer. 2020;1:437–51.

    Article  CAS  PubMed  Google Scholar 

  13. Drapkin BJ, Rudin CM. Advances in small-cell lung cancer (SCLC) translational research. Cold Spring Harb Perspect Med. 2021;11:a038240.

  14. Lallo A, Schenk MW, Frese KK, Blackhall F, Dive C. Circulating tumor cells and CDX models as a tool for preclinical drug development. Transl Lung Cancer Res. 2017;6:397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meuwissen R, Linn SC, Linnoila RI, Zevenhoven J, Mooi WJ, Berns A. Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell. 2003;4:181–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kim DW, Wu N, Kim YC, Cheng PF, Basom R, Kim D, et al. Genetic requirement for Mycl and efficacy of RNA Pol I inhibition in mouse models of small cell lung cancer. Genes Dev. 2016;30:1289–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu N, Jia D, Ibrahim AH, Bachurski CJ, Gronostajski RM, MacPherson D. NFIB overexpression cooperates with Rb/p53 deletion to promote small cell lung cancer. Oncotarget. 2016;7:57514–24.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gazdar AF, Savage TK, Johnson JE, Berns A, Sage J, Linnoila RI, et al. The comparative pathology of genetically engineered mouse models for neuroendocrine carcinomas of the lung. J Thorac Oncol. 2015;10:553–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jia D, Augert A, Kim DW, Eastwood E, Wu N, Ibrahim AH, et al. Crebbp loss drives small cell lung cancer and increases sensitivity to HDAC inhibition. Cancer Discov. 2018;8:1422–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Augert A, Mathsyaraja H, Ibrahim AH, Freie B, Geuenich MJ, Cheng PF, et al. MAX functions as a tumor suppressor and rewires metabolism in small cell lung cancer. Cancer Cell. 2020;38:97–114.e117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grunblatt E, Wu N, Zhang H, Liu X, Norton JP, Ohol Y, et al. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev. 2020;34:1210–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olsen RR, Ireland AS, Kastner DW, Groves SM, Spainhower KB, Pozo K, et al. ASCL1 represses a SOX9(+) neural crest stem-like state in small cell lung cancer. Genes Dev. 2021;35:847–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chalishazar MD, Wait SJ, Huang F, Ireland AS, Mukhopadhyay A, Lee Y, et al. MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clin Cancer Res. 2019;25:5107–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ciampricotti M, Karakousi T, Richards AL, Quintanal-Villalonga A, Karatza A, Caeser R, et al. Rlf-Mycl gene fusion drives tumorigenesis and metastasis in a mouse model of small cell lung cancer. Cancer Discov. 2021;11:3214–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ireland AS, Micinski AM, Kastner DW, Guo B, Wait SJ, Spainhower KB, et al. MYC drives temporal evolution of small cell lung cancer subtypes by reprogramming neuroendocrine fate. Cancer Cell. 2020;38:60–78.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mollaoglu G, Guthrie MR, Bohm S, Bragelmann J, Can I, Ballieu PM, et al. MYC drives progression of small cell lung cancer to a variant neuroendocrine subtype with vulnerability to aurora kinase inhibition. Cancer Cell. 2017;31:270–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang D, Denny SK, Greenside PG, Chaikovsky AC, Brady JJ, Ouadah Y, et al. Intertumoral heterogeneity in SCLC is influenced by the cell type of origin. Cancer Discov. 2018;8:1316–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lim JS, Ibaseta A, Fischer MM, Cancilla B, O’Young G, Cristea S, et al. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature. 2017;545:360–4.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Christensen CL, Kwiatkowski N, Abraham BJ, Carretero J, Al-Shahrour F, Zhang T, et al. Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer Cell. 2014;26:909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schaffer BE, Park KS, Yiu G, Conklin JF, Lin C, Burkhart DL, et al. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res. 2010;70:3877–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sutherland KD, Proost N, Brouns I, Adriaensen D, Song JY, Berns A. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell. 2011;19:754–64.

    Article  CAS  PubMed  Google Scholar 

  33. Calbo J, van Montfort E, Proost N, van Drunen E, Beverloo HB, Meuwissen R, et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell. 2011;19:244–56.

    Article  CAS  PubMed  Google Scholar 

  34. Denny SK, Yang D, Chuang CH, Brady JJ, Lim JS, Gruner BM, et al. Nfib promotes metastasis through a widespread increase in chromatin accessibility. Cell. 2016;166:328–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Semenova EA, Kwon MC, Monkhorst K, Song JY, Bhaskaran R, Krijgsman O, et al. Transcription factor NFIB is a driver of small cell lung cancer progression in mice and marks metastatic disease in patients. Cell Rep. 2016;16:631–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dooley AL, Winslow MM, Chiang DY, Banerji S, Stransky N, Dayton TL, et al. Nuclear factor I/B is an oncogene in small cell lung cancer. Genes Dev. 2011;25:1470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ng SR, Rideout WM 3rd, Akama-Garren EH, Bhutkar A, Mercer KL, Schenkel JM, et al. CRISPR-mediated modeling and functional validation of candidate tumor suppressor genes in small cell lung cancer. Proc Natl Acad Sci USA. 2020;117:513–21.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. McFadden DG, Papagiannakopoulos T, Taylor-Weiner A, Stewart C, Carter SL, Cibulskis K, et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell. 2014;156:1298–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Park KS, Martelotto LG, Peifer M, Sos ML, Karnezis AN, Mahjoub MR, et al. A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med. 2011;17:1504–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim KB, Kim Y, Rivard CJ, Kim DW, Park KS. FGFR1 is critical for RBL2 loss-driven tumor development and requires PLCG1 activation for continued growth of small cell lung cancer. Cancer Res. 2020;80:5051–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferone G, Song JY, Krijgsman O, van der Vliet J, Cozijnsen M, Semenova EA, et al. FGFR1 oncogenic activation reveals an alternative cell of origin of SCLC in Rb1/p53 mice. Cell Rep. 2020;30:3837–3850.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bottger F, Semenova EA, Song JY, Ferone G, van der Vliet J, Cozijnsen M, et al. Tumor heterogeneity underlies differential cisplatin sensitivity in mouse models of small-cell lung cancer. Cell Rep. 2019;27:3345–3358.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Borromeo MD, Savage TK, Kollipara RK, He M, Augustyn A, Osborne JK, et al. ASCL1 and NEUROD1 reveal heterogeneity in pulmonary neuroendocrine tumors and regulate distinct genetic programs. Cell Rep. 2016;16:1259–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Helin K, Holm K, Niebuhr A, Eiberg H, Tommerup N, Hougaard S, et al. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc Natl Acad Sci USA. 1997;94:6933–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferone G, Lee MC, Sage J, Berns A. Cells of origin of lung cancers: lessons from mouse studies. Genes Dev. 2020;34:1017–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ouadah Y, Rojas ER, Riordan DP, Capostagno S, Kuo CS, Krasnow MA. Rare pulmonary neuroendocrine cells are stem cells regulated by Rb, p53, and notch. Cell. 2019;179:403–416.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen J, Guanizo A, Luong Q, Jayasekara WSN, Jayasinghe D, Inampudi C, et al. Lineage-restricted neoplasia driven by Myc defaults to small cell lung cancer when combined with loss of p53 and Rb in the airway epithelium. Oncogene. 2022;41:138–45.

    Article  CAS  PubMed  Google Scholar 

  48. Sutherland KD, Ireland AS, Oliver TG. Killing SCLC: insights into how to target a shapeshifting tumor. Genes Dev. 2022;36:241–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cui M, Augert A, Rongione M, Conkrite K, Parazzoli S, Nikitin AY, et al. PTEN is a potent suppressor of small cell lung cancer. Mol Cancer Res. 2014;12:654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hamad SH, Montgomery SA, Simon JM, Bowman BM, Spainhower KB, Murphy RM, et al. TP53, CDKN2A/P16, and NFE2L2/NRF2 regulate the incidence of pure- and combined-small cell lung cancer in mice. Oncogene. 2022;41:3423–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Voigt E, Wallenburg M, Wollenzien H, Thompson E, Kumar K, Feiner J, et al. Sox2 is an oncogenic driver of small-cell lung cancer and promotes the classic neuroendocrine subtype. Mol Cancer Res. 2021;19:2015–25.

    Article  CAS  PubMed  Google Scholar 

  52. Kim KB, Kabra A, Kim DW, Xue Y, Huang Y, Hou PC, et al. KIX domain determines a selective tumor-promoting role for EP300 and its vulnerability in small cell lung cancer. Sci Adv. 2022;8:eabl4618.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jin Y, Zhao Q, Zhu W, Feng Y, Xiao T, Zhang P, et al. Identification of TAZ as the essential molecular switch in orchestrating SCLC phenotypic transition and metastasis. Natl Sci Rev. 2022;9:nwab232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jin Y, Xiao T, Feng Y, Yang J, Guo C, Hu L, et al. A mesenchymal-like subpopulation in non-neuroendocrine SCLC contributes to metastasis. J Genet Genomics. 2021;48:571–81.

    Article  CAS  PubMed  Google Scholar 

  55. Kim KB, Kim DW, Kim Y, Tang J, Kirk N, Gan Y, et al. WNT5A-RHOA signaling is a driver of tumorigenesis and represents a therapeutically actionable vulnerability in small cell lung cancer. Cancer Res. 2022;82:4219–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Peifer M, Fernandez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44:1104–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44:1111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sivakumar S, Moore JA, Montesion M, Sharaf R, Lin DI, Colon CI, et al. Integrative analysis of a large real-world cohort of small cell lung cancer identifies distinct genetic subtypes and insights into histologic transformation. Cancer Discov. 2023;13:1572–91.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Febres-Aldana CA, Chang JC, Ptashkin R, Wang Y, Gedvilaite E, Baine MK, et al. Rb tumor suppressor in small cell lung cancer: combined genomic and IHC analysis with a description of a distinct Rb-proficient subset. Clin Cancer Res. 2022;28:4702–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baine MK, Febres-Aldana CA, Chang JC, Jungbluth AA, Sethi S, Antonescu CR, et al. POU2F3 in SCLC: clinicopathologic and genomic analysis with a focus on its diagnostic utility in neuroendocrine-low SCLC. J Thorac Oncol. 2022;17:1109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Baine MK, Hsieh MS, Lai WV, Egger JV, Jungbluth AA, Daneshbod Y, et al. SCLC subtypes defined by ASCL1, NEUROD1, POU2F3, and YAP1: a comprehensive immunohistochemical and histopathologic characterization. J Thorac Oncol. 2020;15:1823–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Huang YH, Klingbeil O, He XY, Wu XS, Arun G, Lu B, et al. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes Dev. 2018;32:915–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wu XS, He XY, Ipsaro JJ, Huang YH, Preall JB, Ng D, et al. OCA-T1 and OCA-T2 are coactivators of POU2F3 in the tuft cell lineage. Nature. 2022;607:169–75.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carney DN, Gazdar AF, Bepler G, Guccion JG, Marangos PJ, Moody TW, et al. Establishment and identification of small cell lung cancer cell lines having classic and variant features. Cancer Res. 1985;45:2913–23.

    CAS  PubMed  Google Scholar 

  65. Lissa D, Takahashi N, Desai P, Manukyan I, Schultz CW, Rajapakse V, et al. Heterogeneity of neuroendocrine transcriptional states in metastatic small cell lung cancers and patient-derived models. Nat Commun. 2022;13:2023.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qu S, Fetsch P, Thomas A, Pommier Y, Schrump DS, Miettinen MM, et al. Molecular subtypes of primary SCLC tumors and their associations with neuroendocrine and therapeutic markers. J Thorac Oncol. 2022;17:141–53.

    Article  CAS  PubMed  Google Scholar 

  67. Caeser R, Egger JV, Chavan S, Socci ND, Jones CB, Kombak FE, et al. Genomic and transcriptomic analysis of a library of small cell lung cancer patient-derived xenografts. Nat Commun. 2022;13:2144.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell. 2014;159:440–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29:1576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oser MG, Sabet AH, Gao W, Chakraborty AA, Schinzel AC, Jennings RB, et al. The KDM5A/RBP2 histone demethylase represses NOTCH signaling to sustain neuroendocrine differentiation and promote small cell lung cancer tumorigenesis. Genes Dev. 2019;33:1718–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Duplaquet L, Li Y, Booker MA, Xie Y, Olsen SN, Patel RA, et al. KDM6A epigenetically regulates subtype plasticity in small cell lung cancer. Nat Cell Biol. 2023;25:1346–58.

  72. Hong D, Knelson EH, Li Y, Durmaz YT, Gao W, Walton E, et al. Plasticity in the absence of NOTCH uncovers a RUNX2-dependent pathway in small cell lung cancer. Cancer Res. 2021;82:248–63.

  73. Augert A, Zhang Q, Bates B, Cui M, Wang X, Wildey G, et al. Small cell lung cancer exhibits frequent inactivating mutations in the histone methyltransferase KMT2D/MLL2: CALGB 151111 (Alliance). J Thorac Oncol. 2017;12:704–13.

    Article  PubMed  Google Scholar 

  74. Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516:423–7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rogers ZN, McFarland CD, Winters IP, Naranjo S, Chuang CH, Petrov D, et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat Methods. 2017;14:737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Foggetti G, Li C, Cai H, Hellyer JA, Lin WY, Ayeni D, et al. Genetic determinants of EGFR-driven lung cancer growth and therapeutic response in vivo. Cancer Discov. 2021;11:1736–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cole BB, Smith RW, Jenkins KM, Graham BB, Reynolds PR, Reynolds SD. Tracheal basal cells: a facultative progenitor cell pool. Am J Pathol. 2010;177:362–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Song H, Yao E, Lin C, Gacayan R, Chen MH, Chuang PT. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci USA. 2012;109:17531–6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee MC, Cai H, Murray CW, Li C, Shue YT, Andrejka L, et al. A multiplexed in vivo approach to identify driver genes in small cell lung cancer. Cell Rep. 2023;42:111990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36:385–401.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang H, Christensen CL, Dries R, Oser MG, Deng J, Diskin B, et al. CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell. 2019;37:37–54.e9.

  82. Hiatt JB, Sandborg H, Garrison SM, Arnold HU, Liao SY, Norton JP, et al. Inhibition of LSD1 with bomedemstat sensitizes small cell lung cancer to immune checkpoint blockade and T-cell killing. Clin Cancer Res. 2022;28:4551–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nguyen EM, Taniguchi H, Chan JM, Zhan YA, Chen X, Qiu J, et al. Targeting lysine-specific demethylase 1 rescues major histocompatibility complex class I antigen presentation and overcomes programmed death-ligand 1 blockade resistance in SCLC. J Thorac Oncol. 2022;17:1014–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Doerr F, George J, Schmitt A, Beleggia F, Rehkamper T, Hermann S, et al. Targeting a non-oncogene addiction to the ATR/CHK1 axis for the treatment of small cell lung cancer. Sci Rep. 2017;7:15511.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  85. Weiskopf K, Jahchan NS, Schnorr PJ, Cristea S, Ring AM, Maute RL, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer. J Clin Invest. 2016;126:2610–20.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mahadevan NR, Knelson EH, Wolff JO, Vajdi A, Saigi M, Campisi M, et al. Intrinsic immunogenicity of small cell lung carcinoma revealed by its cellular plasticity. Cancer Discov. 2021;11:1952–69.

  87. Nishiga Y, Drainas AP, Baron M, Bhattacharya D, Barkal AA, Ahrari Y, et al. Radiotherapy in combination with CD47 blockade elicits a macrophage-mediated abscopal effect. Nat Cancer. 2022;3:1351–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Qu F, Brough SC, Michno W, Madubata CJ, Hartmann GG, Puno A, et al. Crosstalk between small-cell lung cancer cells and astrocytes mimics brain development to promote brain metastasis. Nat Cell Biol. 2023;25:1506–19.

    Article  CAS  PubMed  Google Scholar 

  89. Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J, Davis T, et al. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature. 2021;595:309–14.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature. 2017;547:413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang X, Tokheim C, Gu SS, Wang B, Tang Q, Li Y, et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell. 2021;184:5357–5374.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Na F, Pan X, Chen J, Chen X, Wang M, Chi P, et al. KMT2C deficiency promotes small cell lung cancer metastasis through DNMT3A-mediated epigenetic reprogramming. Nat Cancer. 2022;3:753–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures—a comparison of different types of cancer cell cultures. Arch Med Sci. 2018;14:910–9.

    PubMed  Google Scholar 

  94. Yan HHN, Chan AS, Lai FP, Leung SY. Organoid cultures for cancer modeling. Cell Stem Cell. 2023;30:917–37.

    Article  CAS  PubMed  Google Scholar 

  95. Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, Wadosky KM, et al. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science. 2022;377:1180–91.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM, et al. Modelling Myc inhibition as a cancer therapy. Nature. 2008;455:679–83.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pelengaris S, Khan M, Evan GI. Suppression of Myc-induced apoptosis in beta cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell. 2002;109:321–34.

    Article  CAS  PubMed  Google Scholar 

  98. Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33:390–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 2015;517:583–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013;10:977–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. 2013;10:973–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gemberling MP, Siklenka K, Rodriguez E, Tonn-Eisinger KR, Barrera A, Liu F, et al. Transgenic mice for in vivo epigenome editing with CRISPR-based systems. Nat Methods. 2021;18:965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Deng Y, Diepstraten ST, Potts MA, Giner G, Trezise S, Ng AP, et al. Generation of a CRISPR activation mouse that enables modelling of aggressive lymphoma and interrogation of venetoclax resistance. Nat Commun. 2022;13:4739.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Dankort D, Filenova E, Collado M, Serrano M, Jones K, McMahon M. A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes Dev. 2007;21:379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Politi K, Zakowski MF, Fan PD, Schonfeld EA, Pao W, Varmus HE. Lung adenocarcinomas induced in mice by mutant EGF receptors found in human lung cancers respond to a tyrosine kinase inhibitor or to down-regulation of the receptors. Genes Dev. 2006;20:1496–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 2017;168:20–36.

    Article  CAS  PubMed  Google Scholar 

  108. Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. 2016;353:aaf8729.

  109. Ely ZA, Mathey-Andrews N, Naranjo S, Gould SI, Mercer KL, Newby GA, et al. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat Biotechnol. 2023.

  110. Katti A, Vega-Perez A, Foronda M, Zimmerman J, Zafra MP, Granowsky E, et al. Generation of precision preclinical cancer models using regulated in vivo base editing. Nat Biotechnol. 2023.

  111. Dong MB, Tang K, Zhou X, Shen J, Chen K, Kim HR, et al. Cas12a/Cpf1 knock-in mice enable efficient multiplexed immune cell engineering. bioRxiv. 2023. https://doi.org/10.1101/2023.03.14.532657.

Download references

Acknowledgements

We thank Julie Ko for the images of tumors. This work was supported by the NIH (MGO, R37CA269990; JS, CA231997; K-SP, U01CA224293; TGO, U24CA213274; DM, P50CA228944-01A1). JS is the Elaine and John Chambers Professor in Pediatric Cancer.

Author information

Authors and Affiliations

Authors

Contributions

The authors wrote the manuscript and prepared the figures together.

Corresponding authors

Correspondence to Matthew G. Oser or Kwon-Sik Park.

Ethics declarations

Competing interests

MGO reports grants (current and past) from Eli Lilly, Takeda, Novartis, BMS, and Circle Pharma. JS has equity in, and is an advisor for, DISCO Pharmaceuticals. TGO has a patent related to SCLC subtyping and reports grants from Auron Therapeutics. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oser, M.G., MacPherson, D., Oliver, T.G. et al. Genetically-engineered mouse models of small cell lung cancer: the next generation. Oncogene 43, 457–469 (2024). https://doi.org/10.1038/s41388-023-02929-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02929-7

Search

Quick links