Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SOX9 drives KRAS-induced lung adenocarcinoma progression and suppresses anti-tumor immunity

Abstract

The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SOX9 promotes lung tumor progression and loss of Sox9 prevents high-grade tumor formation and increases survival.
Fig. 2: SOX9 promotes growth of KrasG12D mouse lung tumor cells in 3D organoid culture and subcutaneous transplantation systems.
Fig. 3: Cell proliferation and immune suppression are significantly associated with Sox9 overexpression.
Fig. 4: Suppression of CD8+ T cells, NK cells and dendritic cells in Sox9-upregulated mouse lung tumors.
Fig. 5: Suppression of CD8+ T cells, NK cells and dendritic cells in SOX9-upregulated human LUAD tumors.

Similar content being viewed by others

Data availability

The datasets generated during this study can be accessed here: https://doi.org/10.6084/m9.figshare.20810164.

References

  1. Jo A, Denduluri S, Zhang B, Wang Z, Yin L, Yan Z, et al. The versatile functions of Sox9 in development, stem cells, and human diseases. Genes Dis. 2014;1:149–61.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lefebvre V, Angelozzi M, Haseeb A. SOX9 in cartilage development and disease. Curr Opin Cell Biol. 2019;61:39–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Haseeb A, Kc R, Angelozzi M, de Charleroy C, Rux D, Tower RJ, et al. SOX9 keeps growth plates and articular cartilage healthy by inhibiting chondrocyte dedifferentiation/osteoblastic redifferentiation. Proc Natl Acad Sci USA. 2021;118:e2019152118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rockich BE, Hrycaj SM, Shih HP, Nagy MS, Ferguson MA, Kopp JL, et al. Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci USA. 2013;110:E4456–4464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16:2813–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, Deng JM, et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci USA. 2005;102:14665–70.

    Article  CAS  PubMed  Google Scholar 

  7. Guven A, Kalebic N, Long KR, Florio M, Vaid S, Brandl H, et al. Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. Elife. 2020;9:e49808.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, et al. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci USA. 2007;104:1865–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372:525–30.

    Article  CAS  PubMed  Google Scholar 

  10. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79:1111–20.

    Article  CAS  PubMed  Google Scholar 

  11. Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod. 2006;74:195–201.

    Article  CAS  PubMed  Google Scholar 

  12. Ruan H, Hu S, Zhang H, Du G, Li X, Li X, et al. Upregulated SOX9 expression indicates worse prognosis in solid tumors: a systematic review and meta-analysis. Oncotarget. 2017;8:113163–73.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Aguilar-Medina M, Avendano-Felix M, Lizarraga-Verdugo E, Bermudez M, Romero-Quintana JG, Ramos-Payan R, et al. SOX9 stem-cell factor: clinical and functional relevance in cancer. J Oncol. 2019;2019:6754040.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Panda M, Tripathi SK, Biswal BK. SOX9: An emerging driving factor from cancer progression to drug resistance. Biochim Biophys Acta Rev Cancer. 2021;1875:188517.

    Article  CAS  PubMed  Google Scholar 

  15. Wang HY, Lian P, Zheng PS. SOX9, a potential tumor suppressor in cervical cancer, transactivates p21WAF1/CIP1 and suppresses cervical tumor growth. Oncotarget. 2015;6:20711–22.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Passeron T, Valencia JC, Namiki T, Vieira WD, Passeron H, Miyamura Y, et al. Upregulation of SOX9 inhibits the growth of human and mouse melanomas and restores their sensitivity to retinoic acid. J Clin Invest. 2009;119:954–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou H, Qin Y, Ji S, Ling J, Fu J, Zhuang Z, et al. SOX9 activity is induced by oncogenic Kras to affect MDC1 and MCMs expression in pancreatic cancer. Oncogene. 2018;37:912–23.

    Article  CAS  PubMed  Google Scholar 

  18. Capaccione KM, Hong X, Morgan KM, Liu W, Bishop JM, Liu L, et al. Sox9 mediates Notch1-induced mesenchymal features in lung adenocarcinoma. Oncotarget. 2014;5:3636–50.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ling S, Chang X, Schultz L, Lee TK, Chaux A, Marchionni L, et al. An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer. Cancer Res. 2011;71:3812–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song S, Ajani JA, Honjo S, Maru DM, Chen Q, Scott AW, et al. Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 2014;74:4170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmidlin CJ, Zeng T, Liu P, Wei Y, Dodson M, Chapman E, et al. Chronic arsenic exposure enhances metastatic potential via NRF2-mediated upregulation of SOX9. Toxicol Appl Pharmacol. 2020;402:115138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang S, Che D, Yang F, Chi C, Meng H, Shen J, et al. Tumor-associated macrophages promote tumor metastasis via the TGF-beta/SOX9 axis in non-small cell lung cancer. Oncotarget. 2017;8:99801–15.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hong X, Liu W, Song R, Shah JJ, Feng X, Tsang CK, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shao N, Huang H, Idris M, Peng X, Xu F, Dong S, et al. KEAP1 Mutations Drive Tumorigenesis by Suppressing SOX9 Ubiquitination and Degradation. Adv Sci (Weinh). 2020;7:2001018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luanpitpong S, Li J, Manke A, Brundage K, Ellis E, McLaughlin SL, et al. SLUG is required for SOX9 stabilization and functions to promote cancer stem cells and metastasis in human lung carcinoma. Oncogene. 2016;35:2824–33.

    Article  CAS  PubMed  Google Scholar 

  26. Suryo Rahmanto A, Savov V, Brunner A, Bolin S, Weishaupt H, Malyukova A, et al. FBW7 suppression leads to SOX9 stabilization and increased malignancy in medulloblastoma. EMBO J. 2016;35:2192–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang JQ, Wei FK, Xu XL, Ye SX, Song JW, Ding PK, et al. SOX9 drives the epithelial-mesenchymal transition in non-small-cell lung cancer through the Wnt/beta-catenin pathway. J Transl Med. 2019;17:143.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tripathi SK, Biswal BK. SOX9 promotes epidermal growth factor receptor-tyrosine kinase inhibitor resistance via targeting beta-catenin and epithelial to mesenchymal transition in lung cancer. Life Sci. 2021;277:119608.

    Article  CAS  PubMed  Google Scholar 

  29. Tripathi SK, Sahoo RK, Biswal BK. SOX9 as an emerging target for anticancer drugs and a prognostic biomarker for cancer drug resistance. Drug Discov Today. 2022;27:2541–50.

    Article  CAS  PubMed  Google Scholar 

  30. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  31. Jiang SS, Fang WT, Hou YH, Huang SF, Yen BL, Chang JL, et al. Upregulation of SOX9 in lung adenocarcinoma and its involvement in the regulation of cell growth and tumorigenicity. Clin Cancer Res. 2010;16:4363–73.

    Article  CAS  PubMed  Google Scholar 

  32. Kopp JL, von Figura G, Mayes E, Liu FF, Dubois CL, Morris JPt, et al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22:737–50.

  33. Grimm D, Bauer J, Wise P, Kruger M, Simonsen U, Wehland M, et al. The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol. 2020;67:122–53.

    Article  CAS  PubMed  Google Scholar 

  34. Zhou CH, Ye LP, Ye SX, Li Y, Zhang XY, Xu XY, et al. Clinical significance of SOX9 in human non-small cell lung cancer progression and overall patient survival. J Exp Clin Cancer Res. 2012;31:18.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014;516:428–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jackson EL, Olive KP, Tuveson DA, Bronson R, Crowley D, Brown M, et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 2005;65:10280–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ambrogio C, Gomez-Lopez G, Falcone M, Vidal A, Nadal E, Crosetto N, et al. Combined inhibition of DDR1 and Notch signaling is a therapeutic strategy for KRAS-driven lung adenocarcinoma. Nat Med. 2016;22:270–7.

    Article  CAS  PubMed  Google Scholar 

  38. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174:6477–89.

    Article  CAS  PubMed  Google Scholar 

  39. Mikucki ME, Fisher DT, Matsuzaki J, Skitzki JJ, Gaulin NB, Muhitch JB, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458.

    Article  CAS  PubMed  Google Scholar 

  40. Spranger S, Dai D, Horton B, Gajewski TF. Tumor-Residing Batf3 Dendritic Cells Are Required for Effector T Cell Trafficking and Adoptive T Cell Therapy. Cancer Cell. 2017;31:711–23 e714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M, Slingluff C, et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res. 2009;69:3077–85.

    Article  CAS  PubMed  Google Scholar 

  42. Muthuswamy R, McGray AR, Battaglia S, He W, Miliotto A, Eppolito C, et al. CXCR6 by increasing retention of memory CD8(+) T cells in the ovarian tumor microenvironment promotes immunosurveillance and control of ovarian cancer. J Immunother Cancer. 2021;9:e003329.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Y, Qi Z, Zhou M, Yang W, Hu R, Li G, et al. Stanniocalcin1 promotes cell proliferation, chemoresistance and metastasis in hypoxic gastric cancer cells via Bcl2. Oncol Rep. 2019;41:1998–2008.

    CAS  PubMed  Google Scholar 

  45. Chakraborty A, Brooks H, Zhang P, Smith W, McReynolds MR, Hoying JB, et al. Stanniocalcin-1 regulates endothelial gene expression and modulates transendothelial migration of leukocytes. Am J Physiol Renal Physiol. 2007;292:F895–904.

    Article  CAS  PubMed  Google Scholar 

  46. Lin H, Kryczek I, Li S, Green MD, Ali A, Hamasha R, et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell. 2021;39:480–93 e486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takizawa N, Hironaka T, Mae K, Ueno T, Horii Y, Nagasaka A, et al. GPRC5B promotes collagen production in myofibroblasts. Biochem Biophys Res Commun. 2021;561:180–6.

    Article  CAS  PubMed  Google Scholar 

  48. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3:a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xiao Q, Jiang Y, Liu Q, Yue J, Liu C, Zhao X, et al. Minor type IV collagen alpha5 chain promotes cancer progression through discoidin domain receptor-1. PLoS Genet. 2015;11:e1005249.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Skinner SJ, Somervell CE, Buch S, Post M. Transferrin gene expression and transferrin immunolocalization in developing foetal rat lung. J Cell Sci. 1991;99:651–6. Pt 3.

    Article  PubMed  Google Scholar 

  51. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2018;48:812–830 e814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, et al. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun. 2020;11:2285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Borgenvik A, Holmberg KO, Bolin S, Zhao M, Savov V, Rosén G, et al. Dormant SOX9-Positive Cells Facilitate MYC-Driven Recurrence of Medulloblastoma. Cancer Research. 2022;82:4586–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scharf GM, Kilian K, Cordero J, Wang Y, Grund A, Hofmann M, et al. Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight. 2019;4:e126721.

    Article  PubMed Central  Google Scholar 

  55. Ashkenazi S, Ortenberg R, Besser M, Schachter J, Markel G. SOX9 indirectly regulates CEACAM1 expression and immune resistance in melanoma cells. Oncotarget. 2016;7:30166–77.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Heng TS, Painter MW. Immunological Genome Project C. The Immunological Genome Project: networks of gene expression in immune cells. Nat Immunol. 2008;9:1091–4.

    Article  CAS  PubMed  Google Scholar 

  57. Kuczek DE, Larsen AMH, Thorseth ML, Carretta M, Kalvisa A, Siersbaek MS, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer. 2019;7:68.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gordon-Weeks A, Yuzhalin AE. Cancer extracellular matrix proteins regulate tumour immunity. Cancers (Basel). 2020;12:3331.

    Article  PubMed  Google Scholar 

  59. Nishiyama A, Xin L, Sharov AA, Thomas M, Mowrer G, Meyers E, et al. Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell. 2009;5:420–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022;29:10–21.

    Article  CAS  PubMed  Google Scholar 

  61. Schulz O, Hammerschmidt SI, Moschovakis GL, Forster R. Chemokines and chemokine receptors in lymphoid tissue dynamics. Annu Rev Immunol. 2016;34:203–42.

    Article  CAS  PubMed  Google Scholar 

  62. Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D, Duttagupta PA, et al. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell. 2019;35:885–900 e810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tokunaga R, Zhang W, Naseem M, Puccini A, Berger MD, Soni S, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation - A target for novel cancer therapy. Cancer Treat Rev. 2018;63:40–47.

    Article  CAS  PubMed  Google Scholar 

  64. Kim CW, Kim KD, Lee HK. The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Rep. 2021;54:31–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weiss A. T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases. Cell. 1993;73:209–12.

    Article  CAS  PubMed  Google Scholar 

  66. Elder ME, Lin D, Clever J, Chan AC, Hope TJ, Weiss A, et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science. 1994;264:1596–9.

    Article  CAS  PubMed  Google Scholar 

  67. Palacios EH, Weiss A. Distinct roles for Syk and ZAP-70 during early thymocyte development. J Exp Med. 2007;204:1703–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ritthipichai K, Haymaker CL, Martinez M, Aschenbrenner A, Yi X, Zhang M, et al. Multifaceted role of BTLA in the Control of CD8(+) T-cell fate after antigen encounter. Clin Cancer Res. 2017;23:6151–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taouk G, Hussein O, Zekak M, Abouelghar A, Al-Sarraj Y, Abdelalim EM, et al. CD56 expression in breast cancer induces sensitivity to natural killer-mediated cytotoxicity by enhancing the formation of cytotoxic immunological synapse. Sci Rep. 2019;9:8756.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Laughney AM, Hu J, Campbell NR, Bakhoum SF, Setty M, Lavallee VP, et al. Regenerative lineages and immune-mediated pruning in lung cancer metastasis. Nat Med. 2020;26:259–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dost AFM, Moye AL, Vedaie M, Tran LM, Fung E, Heinze D, et al. Organoids model transcriptional hallmarks of oncogenic KRAS activation in lung epithelial progenitor cells. Cell Stem Cell. 2020;27:663–678 e668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jia Peng for suggestions and discussions. We thank the Wenwei Hu laboratory for help with tissue sectioning and imaging. We thank Gina Castellano and Samantha Grabler for maintaining NSG mice for subcutaneous transplantation. We thank Lucyann Franciosa and Shafiq Bhat from CINJ histology laboratory for IHC staining. We thank Joshua Vieth and Shashi Sharma from the CINJ Immune Monitoring & Advanced Genomics core facility for the flow cytometry assay. Services and results in support of this research project were generated by the Rutgers Cancer Institute of New Jersey Histopathology and Immune Monitoring Shared Resources, supported, in part, with funding from NCI P30CA072720-5919. This work was supported by NCI R01CA190578 (SRP), R01CA237347-01A1 (JYG) and ACS 134036-RSG-19-165-01-TBG (JYG).

Author information

Authors and Affiliations

Authors

Contributions

HZ, HES and SRP conceptualized and directed the overall project; HZ, WL, YT, YW, JC, YK and SRP conceptualized and explained the suppression of anti-tumor immunity; HZ, designed and performed experiments, and analyzed RNA sequencing data; CW and MB generated KrasG12D mouse lung tumor cell lines; HZ, GR and SRP read tumor grades; TP performed pSECC guide RNA screening and provided pSECC plasmids; JYG proposed the mouse model; HZ, WL and SRP prepared figures; HZ and SRP wrote the manuscript; SRP and SG provided funding and research space; HZ, WL, JYG, YK, HES and SRP edited the manuscript.

Corresponding author

Correspondence to Sharon R. Pine.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Lu, W., Tang, Y. et al. SOX9 drives KRAS-induced lung adenocarcinoma progression and suppresses anti-tumor immunity. Oncogene 42, 2183–2194 (2023). https://doi.org/10.1038/s41388-023-02715-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02715-5

Search

Quick links