Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutual regulation between TRIM21 and TRIM8 via K48-linked ubiquitination

Abstract

Tripartite motif (TRIM)-containing proteins, one of the largest subfamilies of the RING type E3 ubiquitin ligases, control important biological processes such as cell apoptosis, autophagy, signal transduction, innate immunity and tumorigenesis. So far, the mutual regulation between TRIM family members has rarely been reported. Here, we found for the first time that there was a direct mutual regulation between TRIM21 and TRIM8 in lung and renal cancer cells, mechanistically by activating their proteasome pathway via Lys48 (K48)- linked ubiquitination. Subsequent studies verified that negatively correlated expressions existed in clinical non-small cell lung cancer (NSCLC) and renal cell carcinoma (RCC) tissues, which were closely related to tumor progression. Our findings highlighted a possible homeostasis between TRIM21 and TRIM8 that might possibly affect cell stemness and was expected to provide a new idea for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Negative regulation between TRIM21 and TRIM8 proteins in H1299 and 293T cells.
Fig. 2: Identification of the interaction between TRIM21 and TRIM8.
Fig. 3: TRIM21 catalyzes TRIM8 degradation via K48-linked ubiquitination.
Fig. 4: TRIM8 also catalyzes TRIM21 degradation via K48-linked ubiquitination.
Fig. 5: TRIM21 and TRIM8 mediated degradation are through the ubiquitin-proteasome pathway.
Fig. 6: Negatively correlated expressions of TRIM21 and TRIM8 are related to the tumorigenesis in NSCLC and RCC.
Fig. 7: Broken balance between TRIM21 and TRIM8 might be related to the stemness of lung and renal cells.
Fig. 8: Schematic diagram of a direct mutual regulation between TRIM21 and TRIM8.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Di Rienzo M, Romagnoli A, Antonioli M, Piacentini M, Fimia GM. TRIM proteins in autophagy: selective sensors in cell damage and innate immune responses. Cell Death Differ. 2020;27:887–902.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jaworska AM, Wlodarczyk NA, Mackiewicz A, Czerwinska P. The role of TRIM family proteins in the regulation of cancer stem cell self-renewal. Stem Cells. 2020;38:165–73.

    Article  CAS  PubMed  Google Scholar 

  3. Hatakeyama S. TRIM proteins and cancer. Nat Rev Cancer. 2011;11:792–804.

    Article  CAS  PubMed  Google Scholar 

  4. Hatakeyama S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci. 2017;42:297–311.

    Article  CAS  PubMed  Google Scholar 

  5. van Gent M, Sparrer KMJ, Gack MU. TRIM proteins and their roles in antiviral host defenses. Annu Rev Virol. 2018;5:385–405.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Watanabe M, Hatakeyama S. TRIM proteins and diseases. J Biochem. 2017;161:135–44.

    CAS  PubMed  Google Scholar 

  7. Yang L, Xia H. TRIM proteins in inflammation: from expression to emerging regulatory mechanisms. Inflammation. 2021;44:811–20.

    Article  CAS  PubMed  Google Scholar 

  8. Alomari M. TRIM21 - a potential novel therapeutic target in cancer. Pharmacol Res. 2021;165:105443.

    Article  CAS  PubMed  Google Scholar 

  9. McEwan WA, Tam JC, Watkinson RE, Bidgood SR, Mallery DL, James LC. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 2013;14:327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Z, Bao M, Lu N, Weng L, Yuan B, Liu YJ. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat Immunol. 2013;14:172–8.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu X, Xue J, Jiang X, Gong Y, Gao C, Cao T, et al. TRIM21 suppresses CHK1 activation by preferentially targeting CLASPIN for K63-linked ubiquitination. Nucleic Acids Res. 2022;50:1517–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones EL, Laidlaw SM, Dustin LB. TRIM21/Ro52 - roles in innate immunity and autoimmune disease. Front Immunol. 2021;12:738473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marzano F, Guerrini L, Pesole G, Sbisa E, Tullo A. Emerging roles of TRIM8 in health and disease. Cells. 2021;10:561.

  14. Esposito JE, De Iuliis V, Avolio F, Liberatoscioli E, Pulcini R, Di Francesco S, et al. Dissecting the functional role of the TRIM8 protein on cancer pathogenesis. Cancers. 2022;14:2309.

  15. Guo L, Dong W, Fu X, Lin J, Dong Z, Tan X, et al. Tripartite motif 8 (TRIM8) positively regulates pro-inflammatory responses in pseudomonas aeruginosa-induced keratitis through promoting K63-linked polyubiquitination of TAK1 protein. Inflammation. 2017;40:454–63.

    Article  CAS  PubMed  Google Scholar 

  16. Li Q, Yan J, Mao AP, Li C, Ran Y, Shu HB, et al. Tripartite motif 8 (TRIM8) modulates TNFalpha- and IL-1beta-triggered NF-kappaB activation by targeting TAK1 for K63-linked polyubiquitination. Proc Natl Acad Sci USA. 2011;108:19341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian Z, Tang J, Liao X, Gong Y, Yang Q, Wu Y, et al. TRIM8 inhibits breast cancer proliferation by regulating estrogen signaling. Am J Cancer Res. 2020;10:3440–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ye W, Hu MM, Lei CQ, Zhou Q, Lin H, Sun MS, et al. TRIM8 negatively regulates TLR3/4-mediated innate immune response by blocking TRIF-TBK1 interaction. J Immunol. 2017;199:1856–64.

    Article  CAS  PubMed  Google Scholar 

  19. Caratozzolo MF, Marzano F, Mastropasqua F, Sbisa E, Tullo A. TRIM8: making the right decision between the oncogene and tumour suppressor role. Genes. 2017;8:354.

  20. Hosseinalizadeh H, Mohamadzadeh O, Kahrizi MS, Razaghi Bahabadi Z, Klionsky DJ, Mirzei H. TRIM8: a double-edged sword in glioblastoma with the power to heal or hurt. Cell Mol Biol Lett. 2023;28:6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Li D, Su X, Zhao Y, Huang A, Li H, et al. AGO4 suppresses tumor growth by modulating autophagy and apoptosis via enhancing TRIM21-mediated ubiquitination of GRP78 in a p53-independent manner. Oncogene. 2023;42:62–77.

    Article  CAS  PubMed  Google Scholar 

  22. Meroni G. TRIM E3 ubiquitin ligases in rare genetic disorders. Adv Exp Med Biol. 2020;1233:311–25.

    Article  CAS  PubMed  Google Scholar 

  23. Woodsmith J, Jenn RC, Sanderson CM. Systematic analysis of dimeric E3-RING interactions reveals increased combinatorial complexity in human ubiquitination networks. Mol Cell Proteomics. 2012;11:M111 016162.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lassot I, Mora S, Lesage S, Zieba BA, Coque E, Condroyer C, et al. The E3 ubiquitin ligases TRIM17 and TRIM41 modulate alpha-synuclein expression by regulating ZSCAN21. Cell Rep. 2018;25:2484–96.e9.

    Article  CAS  PubMed  Google Scholar 

  25. Lionnard L, Duc P, Brennan MS, Kueh AJ, Pal M, Guardia F, et al. TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ. 2019;26:902–17.

    Article  CAS  PubMed  Google Scholar 

  26. Fong KW, Zhao JC, Song B, Zheng B, Yu J. TRIM28 protects TRIM24 from SPOP-mediated degradation and promotes prostate cancer progression. Nat Commun. 2018;9:5007.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yamauchi K, Wada K, Tanji K, Tanaka M, Kamitani T. Ubiquitination of E3 ubiquitin ligase TRIM5 alpha and its potential role. FEBS J. 2008;275:1540–55.

    Article  CAS  PubMed  Google Scholar 

  28. Du L, Li YJ, Fakih M, Wiatrek RL, Duldulao M, Chen Z, et al. Role of SUMO activating enzyme in cancer stem cell maintenance and self-renewal. Nat Commun. 2016;7:12326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qin B, Zou S, Li K, Wang H, Wei W, Zhang B, et al. CSN6-TRIM21 axis instigates cancer stemness during tumorigenesis. Br J Cancer. 2020;122:1673–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang C, Mukherjee S, Tucker-Burden C, Ross JL, Chau MJ, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okumura F, Okumura AJ, Matsumoto M, Nakayama KI, Hatakeyama S. TRIM8 regulates Nanog via Hsp90beta-mediated nuclear translocation of STAT3 in embryonic stem cells. Biochim Biophys Acta. 2011;1813:1784–92.

    Article  CAS  PubMed  Google Scholar 

  32. Okumura F, Matsunaga Y, Katayama Y, Nakayama KI, Hatakeyama S. TRIM8 modulates STAT3 activity through negative regulation of PIAS3. J Cell Sci. 2010;123:2238–45.

    Article  CAS  PubMed  Google Scholar 

  33. Zhan W, Zhang S. TRIM proteins in lung cancer: Mechanisms, biomarkers and therapeutic targets. Life Sci. 2021;268:118985.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Xiansheng Lu for his help in linguistic revision. This work was supported by the National Natural Science Foundation of China (3120566, 31370794) and the key R&D of the Ministry of Science and Technology of China (2016YFC1309604).

Author information

Authors and Affiliations

Authors

Contributions

NS and XL designed the project and wrote the manuscript. LW performed the experiments and analyzed data. HL, AH, YZ, CX and JD provided the technical support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xuemei Liu or Ningsheng Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, H., Huang, A. et al. Mutual regulation between TRIM21 and TRIM8 via K48-linked ubiquitination. Oncogene 42, 3708–3718 (2023). https://doi.org/10.1038/s41388-023-02879-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02879-0

Search

Quick links