Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRIM69 suppressed the anoikis resistance and metastasis of gastric cancer through ubiquitin‒proteasome-mediated degradation of PRKCD

Abstract

The tripartite motif (TRIM) protein family has been investigated in multiple human cancers, including gastric cancer (GC). However, the role of TRIM69 in the anoikis resistance and metastasis of GC cells remains to be elucidated. We identified the differentially expressed genes in anoikis-resistant GC cells using RNA-sequencing analysis. The interaction between TRIM69 and PRKCD was analyzed by coimmunoprecipitation and mass spectrometry. Our results have shown that TRIM69 was significantly downregulated in anoikis-resistant GC cells. TRIM69 overexpression markedly suppressed the anoikis resistance and metastasis of GC cells in vitro and in vivo. TRIM69 knockdown had the opposite effects. Mechanistically, TRIM69 interacted with PRKCD through its B-box domain and catalyzed the K48-linked polyubiquitination of PRKCD. Moreover, TRIM69 inhibited BDNF production in a PRKCD-dependent manner. Importantly, overexpression of PRKCD or BDNF blocked the effects of TRIM69 on the anoikis resistance and metastasis of GC cells. Interestingly, a TRIM69-PRKCD+BDNF+ cell subset was positively associated with metastasis in GC patients. TRIM69-mediated suppression of the anoikis resistance and metastasis of GC cells via modulation of the PRKCD/BDNF axis, with potential implications for novel therapeutic approaches for metastatic GC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TRIM69 expression was low in anoikis-resistant GC cells.
Fig. 2: TRIM69 suppressed the anoikis resistance and metastasis of GC cells in vitro and in vivo.
Fig. 3: TRIM69 directly interacted with PRKCD.
Fig. 4: TRIM69 directly degraded PRKCD via the ubiquitin‒proteasome pathway.
Fig. 5: PRKCD is required for TRIM69 to suppress the anoikis resistance and metastasis of GC cells.
Fig. 6: The TRIM69/PRKCD axis inhibited anoikis resistance and metastasis via BDNF in GC cells.
Fig. 7: The proportion of TRIM69-PRKCD+BDNF+ cells was positively associated with metastasis in GC patients.
Fig. 8: The mechanisms by which TRIM69 suppresses GC anoikis resistance and metastasis.

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request. Moreover, we provide RNA-sequencing and IP-MS results in Supplementary Files 1 and 2.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Shao S, Yang X, Zhang Y, Wang X, Li K, Zhao Y, et al. Oncolytic virotherapy in peritoneal metastasis gastric cancer: the challenges and achievements. Front Mol Biosci. 2022;9:835300.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang T, Wu Y, Fang Z, Yan Q, Zhang S, Sun R, et al. Low expression of RBMS3 and SFRP1 are associated with poor prognosis in patients with gastric cancer. Am J Cancer Res. 2016;6:2679–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahdikia H, Saadati F, Freund E, Gaipl U, Majidzadeh-A K, Shokri B, et al. Gas plasma irradiation of breast cancers promotes immunogenicity, tumor reduction, and an abscopal effect in vivo. Oncoimmunology. 2020;10:1859731.

    PubMed  PubMed Central  Google Scholar 

  5. Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth M, et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8:15267.

    PubMed  PubMed Central  Google Scholar 

  6. Jiang K, Chaimov D, Patel S, Liang J, Wiggins S, Samojlik M, et al. 3-D physiomimetic extracellular matrix hydrogels provide a supportive microenvironment for rodent and human islet culture. Biomaterials. 2019;198:37–48.

    CAS  PubMed  Google Scholar 

  7. Winkler J, Abisoye-Ogunniyan A, Metcalf K, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11:5120.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin L, Chun J, Pan C, Kumar A, Zhang G, Ha Y, et al. The PLAG1-GDH1 axis promotes anoikis resistance and tumor metastasis through CamKK2-AMPK signaling in LKB1-deficient lung cancer. Mol Cell. 2018;69:87–99.e87.

    CAS  PubMed  Google Scholar 

  9. Tan Y, Lin K, Zhao Y, Wu Q, Chen D, Wang J, et al. Adipocytes fuel gastric cancer omental metastasis via PITPNC1-mediated fatty acid metabolic reprogramming. Theranostics. 2018;8:5452–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Avalle L, Incarnato D, Savino A, Gai M, Marino F, Pensa S, et al. MicroRNAs-143 and -145 induce epithelial to mesenchymal transition and modulate the expression of junction proteins. Cell Death Differ. 2017;24:1750–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Haun F, Neumann S, Peintner L, Wieland K, Habicht J, Schwan C, et al. Identification of a novel anoikis signalling pathway using the fungal virulence factor gliotoxin. Nat Commun. 2018;9:3524.

    PubMed  PubMed Central  Google Scholar 

  12. Gan L, Liu P, Lu H, Chen S, Yang J, McCarthy J, et al. Cyclin D1 promotes anchorage-independent cell survival by inhibiting FOXO-mediated anoikis. Cell Death Differ. 2009;16:1408–17.

    CAS  PubMed  Google Scholar 

  13. Malagobadan S, Ho C, Nagoor N. MicroRNA-6744-5p promotes anoikis in breast cancer and directly targets NAT1 enzyme. Cancer Biol Med. 2020;17:101–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, David J, Cook-Spaeth D, Casey S, Cohen D, Selvendiran K, et al. Autophagy induction results in enhanced anoikis resistance in models of peritoneal disease. Mol Cancer Res. 2017;15:26–34.

    CAS  PubMed  Google Scholar 

  15. Takahashi N, Chen H, Harris I, Stover D, Selfors L, Bronson R, et al. Cancer cells co-opt the neuronal redox-sensing channel TRPA1 to promote oxidative-stress tolerance. Cancer Cell. 2018;33:985–1003.e1007.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Maarifi G, Smith N, Maillet S, Moncorgé O, Chamontin C, Edouard J, et al. TRIM8 is required for virus-induced IFN response in human plasmacytoid dendritic cells. Sci Adv. 2019;5:eaax3511.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo P, Qiu Y, Ma X, Li T, Ma X, Zhu L, et al. Tripartite motif 31 promotes resistance to anoikis of hepatocarcinoma cells through regulation of p53-AMPK axis. Exp Cell Res. 2018;368:59–66.

    CAS  PubMed  Google Scholar 

  18. Ma X, Ma X, Qiu Y, Zhu L, Lin Y, You Y, et al. TRIM50 suppressed hepatocarcinoma progression through directly targeting SNAIL for ubiquitous degradation. Cell Death Dis. 2018;9:608.

    PubMed  PubMed Central  Google Scholar 

  19. Rihn S, Aziz M, Stewart D, Hughes J, Turnbull M, Varela M, et al. TRIM69 inhibits vesicular stomatitis Indiana virus. J Virol. 2019;93:e00951–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang K, Zou C, Wang X, Huang C, Feng T, Pan W, et al. Interferon-stimulated TRIM69 interrupts dengue virus replication by ubiquitinating viral nonstructural protein 3. PLoS Pathog. 2018;14:e1007287.

    PubMed  PubMed Central  Google Scholar 

  21. Han Y, Li R, Gao J, Miao S, Wang L. Characterisation of human RING finger protein TRIM69, a novel testis E3 ubiquitin ligase and its subcellular localisation. Biochem Biophys Res Commun. 2012;429:6–11.

    CAS  PubMed  Google Scholar 

  22. Han R, Wang R, Zhao Q, Han Y, Zong S, Miao S, et al. Trim69 regulates zebrafish brain development by ap-1 pathway. Sci Rep. 2016;6:24034.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rong X, Rao J, Li D, Jing Q, Lu Y, Ji Y. TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biol. 2019;22:101157.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li L, Zheng J, Kang R, Yan J. Targeting Trim69 alleviates high fat diet (HFD)-induced hippocampal injury in mice by inhibiting apoptosis and inflammation through ASK1 inactivation. Biochem Biophys Res Commun. 2019;515:658–64.

    CAS  PubMed  Google Scholar 

  25. Mak C, Yung M, Hui L, Leung L, Liang R, Chen K, et al. MicroRNA-141 enhances anoikis resistance in metastatic progression of ovarian cancer through targeting KLF12/Sp1/survivin axis. Mol Cancer. 2017;16:11.

    PubMed  PubMed Central  Google Scholar 

  26. Wang X, Li Y, He M, Kong X, Jiang P, Liu X, et al. UbiBrowser 2.0: a comprehensive resource for proteome-wide known and predicted ubiquitin ligase/deubiquitinase-substrate interactions in eukaryotic species. Nucleic Acids Res. 2022;50:D719–28.

    CAS  PubMed  Google Scholar 

  27. Li Y, Xie P, Lu L, Wang J, Diao L, Liu Z, et al. An integrated bioinformatics platform for investigating the human E3 ubiquitin ligase-substrate interaction network. Nat Commun. 2017;8:347.

    PubMed  PubMed Central  Google Scholar 

  28. Zheng X, Wu Y, Bi J, Huang Y, Cheng Y, Li Y, et al. The use of supercytokines, immunocytokines, engager cytokines, and other synthetic cytokines in immunotherapy. Cell Mol Immunol. 2022;19:192–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wei J, Gronert K. Eicosanoid and specialized proresolving mediator regulation of lymphoid cells. Trends Biochem Sci. 2019;44:214–25.

    CAS  PubMed  Google Scholar 

  30. Ren J, Smid M, Iaria J, Salvatori D, van Dam H, Zhu H, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019;21:109.

    PubMed  PubMed Central  Google Scholar 

  31. Akil H, Perraud A, Jauberteau M, Mathonnet M. Tropomyosin-related kinase B/brain derived-neurotrophic factor signaling pathway as a potential therapeutic target for colorectal cancer. World J Gastroenterol. 2016;22:490–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li T, Yu Y, Song Y, Li X, Lan D, Zhang P, et al. Activation of BDNF/TrkB pathway promotes prostate cancer progression via induction of epithelial-mesenchymal transition and anoikis resistance. FASEB J. 2020;34:9087–101.

    CAS  PubMed  Google Scholar 

  33. Douma S, Van Laar T, Zevenhoven J, Meuwissen R, Van Garderen E, Peeper D. Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB. Nature. 2004;430:1034–9.

    CAS  PubMed  Google Scholar 

  34. Taddei M, Giannoni E, Fiaschi T, Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J Pathol. 2012;226:380–93.

    CAS  PubMed  Google Scholar 

  35. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833:3481–98.

    CAS  PubMed  Google Scholar 

  36. Sun R, Lü W, Liu Z, Yang Y, Wang X, Zhao X, et al. FOXI1 inhibits gastric cancer cell proliferation by activating miR-590/ATF3 axis via integrating ChIP-seq and RNA-seq data. Prog Biophys Mol Biol. 2021;163:34–45.

    CAS  PubMed  Google Scholar 

  37. Sun R, Liu Z, Tong D, Yang Y, Guo B, Wang X, et al. miR-491-5p, mediated by Foxi1, functions as a tumor suppressor by targeting Wnt3a/β-catenin signaling in the development of gastric cancer. Cell Death Dis. 2017;8:e2714.

    PubMed  PubMed Central  Google Scholar 

  38. Munson M, Mathai B, Ng M, Trachsel-Moncho L, de la Ballina L, Simonsen A. GAK and PRKCD kinases regulate basal mitophagy. Autophagy. 2022;18:467–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Braga L, Miranda R, Granja M, Giestal-de-Araujo E, Dos Santos A. PKC delta activation increases neonatal rat retinal cells survival in vitro: involvement of neurotrophins and M1 muscarinic receptors. Biochem Biophys Res Commun. 2018;500:917–23.

    CAS  PubMed  Google Scholar 

  40. Yuan Y, Yangmei Z, Rongrong S, Xiaowu L, Youwei Z, Sun S. Sotrastaurin attenuates the stemness of gastric cancer cells by targeting PKCδ. Biomed Pharmacother. 2019;117:109165.

    CAS  PubMed  Google Scholar 

  41. Nakashima K, Uekita T, Yano S, Kikuchi J, Nakanishi R, Sakamoto N, et al. Novel small molecule inhibiting CDCP1-PKCδ pathway reduces tumor metastasis and proliferation. Cancer Sci. 2017;108:1049–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nitschke F, Ahonen S, Nitschke S, Mitra S, Minassian B. Lafora disease - from pathogenesis to treatment strategies. Nat Rev Neurol. 2018;14:606–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Humphries F, Bergin R, Jackson R, Delagic N, Wang B, Yang S, et al. The E3 ubiquitin ligase Pellino2 mediates priming of the NLRP3 inflammasome. Nat Commun. 2018;9:1560.

    PubMed  PubMed Central  Google Scholar 

  44. Meyer H, Rape M. Enhanced protein degradation by branched ubiquitin chains. Cell. 2014;157:910–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu P, Duong D, Seyfried N, Cheng D, Xie Y, Robert J, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell. 2009;137:133–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhai Y, Wang Q, Zhu Z, Hao Y, Han F, Hong J, et al. High-efficiency brain-targeted intranasal delivery of BDNF mediated by engineered exosomes to promote remyelination. Biomater Sci. 2022;10:5707–18.

    CAS  PubMed  Google Scholar 

  47. Ibarra I, Ratnu V, Gordillo L, Hwang I, Mariani L, Weinand K, et al. Comparative chromatin accessibility upon BDNF stimulation delineates neuronal regulatory elements. Mol Syst Biol. 2022;18:e10473.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu J, Xi K, Tang J, Wang J, Tang Y, Wu L, et al. Engineered living oriented electrospun fibers regulate stem cell para-secretion and differentiation to promote spinal cord repair. Adv Healthc Mater. 2022;12:e2202785.

    Google Scholar 

  49. Lin X, Dinglin X, Cao S, Zheng S, Wu C, Chen W, et al. Enhancer-driven lncRNA BDNF-AS induces endocrine resistance and malignant progression of breast cancer through the RNH1/TRIM21/mTOR cascade. Cell Rep. 2020;31:107753.

    CAS  PubMed  Google Scholar 

  50. Bergin S, Xiao R, Huang W, Judd C, Liu X, Mansour A, et al. Environmental activation of a hypothalamic BDNF-adipocyte IL-15 axis regulates adipose-natural killer cells. Brain Behav Immun. 2021;95:477–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Esfandi F, Bouraghi H, Glassy M, Taheri M, Kahaei M, Kholghi Oskooei V, et al. Brain-derived neurotrophic factor downregulation in gastric cancer. J Cell Biochem. 2019;120:17831–7.

    CAS  PubMed  Google Scholar 

  52. Jin Z, Lu Y, Wu X, Pan T, Yu Z, Hou J, et al. The cross-talk between tumor cells and activated fibroblasts mediated by lactate/BDNF/TrkB signaling promotes acquired resistance to anlotinib in human gastric cancer. Redox Biol. 2021;46:102076.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding D, Hou R, Gao Y, Feng Y. miR-613 inhibits gastric cancer progression through repressing brain derived neurotrophic factor. Exp Ther Med. 2018;15:1735–41.

    CAS  PubMed  Google Scholar 

  54. Li H, Han X, Yang S, Wang Y, Dong Y, Tang T. FOXP1 drives osteosarcoma development by repressing P21 and RB transcription downstream of P53. Oncogene. 2021;40:2785–802.

    CAS  PubMed  Google Scholar 

  55. Tan B, Tiong K, Choo H, Chung F, Hii L, Tan S, et al. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis. 2015;6:e1826.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Han R, Zhao Q, Zong S, Miao S, Song W, Wang L. A novel TRIM family member, Trim69, regulates zebrafish development through p53-mediated apoptosis. Mol Reprod Dev. 2016;83:442–54.

    CAS  PubMed  Google Scholar 

  57. Ng H, Lee R, Goh S, Tay I, Lim X, Lee B, et al. Immunohistochemical scoring of CD38 in the tumor microenvironment predicts responsiveness to anti-PD-1/PD-L1 immunotherapy in hepatocellular carcinoma. J Immunother Cancer. 2020;8:e000987.

    PubMed  PubMed Central  Google Scholar 

  58. Seo Y, Jiang X, Sullivan K, Jalikis F, Smythe K, Abbasi A, et al. Mobilization of CD8 T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. Clin Cancer Res. 2019;25:3934–45.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Natural Science Foundation of China (81802843,82073156,82270561,81872328); Key Research and Development Program of Jiangsu Province (BE2020656); The key project of Jiangsu Provincial Health and wellness Commission (ZD2021050); The Health Personnel Training Project of Suzhou (GSWS201903); Suzhou “Science and Education Revitalize Health” Youth Science and Technology Project (KJXW2022005).

Author information

Authors and Affiliations

Authors

Contributions

The authors checked and approved the final manuscript. LQS, JYW, and JTL performed the experiments. LQS, YQC, and LX performed the data analysis. KW and KES performed sample collection and clinical evaluation. JHZ and DZZ provided guidance on experimental technology. GBZ, TGS, and WCC are the corresponding authors and they designed the research. The manuscript was wrote by LQS and revised by GBZ, TGS, and WCC.

Corresponding authors

Correspondence to Guangbo Zhang, Tongguo Shi or Weichang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Chen, Y., Xia, L. et al. TRIM69 suppressed the anoikis resistance and metastasis of gastric cancer through ubiquitin‒proteasome-mediated degradation of PRKCD. Oncogene 42, 3619–3632 (2023). https://doi.org/10.1038/s41388-023-02873-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02873-6

This article is cited by

Search

Quick links