Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYC directly transactivates CR2/CD21, the receptor of the Epstein–Barr virus, enhancing the viral infection of Burkitt lymphoma cells

Abstract

MYC is an oncogenic transcription factor dysregulated in about half of total human tumors. While transcriptomic studies reveal more than 1000 genes regulated by MYC, a much smaller fraction of genes is directly transactivated by MYC. Virtually all Burkitt lymphoma (BL) carry chromosomal translocations involving MYC oncogene. Most endemic BL and a fraction of sporadic BL are associated with Epstein–Barr virus (EBV) infection. The currently accepted mechanism is that EBV is the BL-causing agent inducing MYC translocation. Herein we show that the EBV receptor, CR2 (also called CD21), is a direct MYC target gene. This is based on several pieces of evidence: MYC induces CR2 expression in both proliferating and arrested cells and in the absence of protein synthesis, binds the CR2 promoter and transactivates CR2 in an E-box-dependent manner. Moreover, using mice with conditional MYC ablation we show that MYC induces CR2 in primary B cells. Importantly, modulation of MYC levels directly correlates with EBV’s ability of infection in BL cells. Altogether, in contrast to the widely accepted hypothesis for the correlation between EBV and BL, we propose an alternative hypothesis in which MYC dysregulation could be the first event leading to the subsequent EBV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Downregulation of MYC results in lower CR2 expression.
Fig. 2: MYC induces CR2 expression in arrested cells.
Fig. 3: Binding of MYC to the promoter of CR2.
Fig. 4: CR2 is a direct MYC target gene.
Fig. 5: Myc induces CR2 expression in primary B cells.
Fig. 6: MYC depletion decreases EBV infection of B cells.
Fig. 7: MYC overexpression increases EBV infection of B cells.
Fig. 8: Two non-mutually exclusive models for pathogenesis of Burkitt lymphoma.

Similar content being viewed by others

Data availability

The authors declare that all data that support the findings of this study are available within the paper and supplementary files.

References

  1. Dang CV. MYC on the path to cancer. Cell. 2012;149:22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med. 2014;4:1–24.

    Article  Google Scholar 

  3. Bretones G, Delgado MD, Leon J. Myc and cell cycle control. Biochim Biophys Acta. 2015;1849:506–16.

    Article  CAS  PubMed  Google Scholar 

  4. Zeller KI, Zhao X, Lee CW, Chiu KP, Yao F, Yustein JT, et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc Natl Acad Sci USA. 2006;103:17834–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 2014;511:488–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151:68–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151:56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kress TR, Sabò A, Amati B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer. 2015;15:593–607.

    Article  CAS  PubMed  Google Scholar 

  9. Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D, et al. MYC deregulation in primary human cancers. Genes (Basel). 2017;8:151.

    Article  PubMed  Google Scholar 

  10. Schaub FX, Dhankani V, Berger AC, Trivedi M, Richardson AB, Shaw R, et al. Pan-cancer alterations of the MYC oncogene and its proximal network across the Cancer Genome Atlas. Cell Syst. 2018;6:282–300.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Delgado MD, Leon J. Myc roles in hematopoiesis and leukemia. Genes Cancer. 2010;1:605–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122:3884–91.

    Article  CAS  PubMed  Google Scholar 

  13. Burkitt D. A sarcoma involving the jaws in African children. Br J Surg. 1958;46:218–23.

    Article  CAS  PubMed  Google Scholar 

  14. Molyneux EM, Rochford R, Griffin B, Newton R, Jackson G, Menon G, et al. Burkitt’s lymphoma. Lancet. 2012;379:1234–44.

    Article  PubMed  Google Scholar 

  15. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bisso A, Sabò A, Amati B. MYC in Germinal Center-derived lymphomas: mechanisms and therapeutic opportunities. Immunol Rev. 2019;288:178–97.

    Article  CAS  PubMed  Google Scholar 

  17. Methot SP, Di Noia JM. Molecular mechanisms of somatic hypermutation and class switch recombination. Adv Immunol. 2017;133:37–87.

    Article  CAS  PubMed  Google Scholar 

  18. Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M, et al. AID is required for c-myc/IgH chromosome translocations in vivo. Cell. 2004;118:431–8.

    Article  CAS  PubMed  Google Scholar 

  19. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell. 2008;135:1028–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I. Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat Genet. 1993;5:56–61.

    Article  CAS  PubMed  Google Scholar 

  21. Lopez C, Kleinheinz K, Aukema SM, Rohde M, Bernhart SH, Hubschmann D, et al. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat Commun. 2019;10:1459.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Farrell AS, Sears RC. MYC degradation. Cold Spring Harb Perspect Med. 2014;4:a014365.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thorley-Lawson DA, Allday MJ. The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat Rev Microbiol. 2008;6:913–24.

    Article  CAS  PubMed  Google Scholar 

  24. Al-Khreisat MJ, Ismail NH, Tabnjh A, Hussain FA, Mohamed Yusoff AA, Johan MF, et al. Worldwide prevalence of Epstein-Barr virus in patients with Burkitt lymphoma: a systematic review and meta-analysis. Diagnostics (Basel). 2023;13:2068.

    Article  CAS  PubMed  Google Scholar 

  25. Dunmire SK, Verghese PS, Balfour HH Jr. Primary Epstein-Barr virus infection. J Clin Virol. 2018;102:84–92.

    Article  PubMed  Google Scholar 

  26. Young LS, Yap LF, Murray PG. Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer. 2016;16:789–802.

    Article  CAS  PubMed  Google Scholar 

  27. Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023;21:51–64.

  28. Rowe M, Kelly GL, Bell AI, Rickinson AB. Burkitt’s lymphoma: the Rosetta Stone deciphering Epstein-Barr virus biology. Semin Cancer Biol. 2009;19:377–88.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mancao C, Hammerschmidt W. Epstein-Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood. 2007;110:3715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelly GL, Milner AE, Tierney RJ, Croom-Carter DS, Altmann M, Hammerschmidt W, et al. Epstein-Barr virus nuclear antigen 2 (EBNA2) gene deletion is consistently linked with EBNA3A, -3B, and -3C expression in Burkitt’s lymphoma cells and with increased resistance to apoptosis. J Virol. 2005;79:10709–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, et al. Epstein-Barr-virus-induced one-carbon metabolism drives B cell transformation. Cell Metab. 2019;30:539–55.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Geser A, de The G, Lenoir G, Day NE, Williams EH. Final case reporting from the Ugandan prospective study of the relationship between EBV and Burkitt’s lymphoma. Int J Cancer. 1982;29:397–400.

    Article  CAS  PubMed  Google Scholar 

  33. IARC. Biological Agentes. A review of human carcinogenesis. Epstein-Barr virus. IARC Monographs. 2012;100B:49–92.

    Google Scholar 

  34. Sugden B. Epstein-Barr virus: the path from association to causality for a ubiquitous human pathogen. PLoS Biol. 2014;12:e1001939.

    Article  PubMed  PubMed Central  Google Scholar 

  35. López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, Ogwang MD, et al. Burkitt lymphoma. Nat Rev Dis Primers. 2022;8:78.

    Article  PubMed  Google Scholar 

  36. Allday MJ. How does Epstein-Barr virus (EBV) complement the activation of Myc in the pathogenesis of Burkitt’s lymphoma? Semin Cancer Biol. 2009;19:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nemerow GR, Wolfert R, McNaughton ME, Cooper NR. Identification and characterization of the Epstein-Barr virus receptor on human B lymphocytes and its relationship to the C3d complement receptor (CR2). J Virol. 1985;55:347–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fearon DT, Carter RH. The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol. 1995;13:127–49.

    Article  CAS  PubMed  Google Scholar 

  39. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108:16669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo R, Jiang C, Zhang Y, Govande A, Trudeau SJ, Chen F, et al. MYC controls the Epstein-Barr virus lytic switch. Mol Cell. 2020;78:653–69.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gargouri B, Van Pelt J, El Feki Ael F, Attia H, Lassoued S. Induction of Epstein-Barr virus (EBV) lytic cycle in vitro causes oxidative stress in lymphoblastoid B cell lines. Mol Cell Biochem. 2009;324:55–63.

    Article  CAS  PubMed  Google Scholar 

  42. Acosta JC, Ferrandiz N, Bretones G, Torrano V, Blanco R, Richard C, et al. Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol Cell Biol. 2008;28:7286–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Penn LJ, Brooks MW, Laufer EM, Land H. Negative autoregulation of c-myc transcription. Embo J. 1990;9:1113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Delgado MD, Lerga A, Canelles M, Gomez-Casares MT, Leon J. Differential regulation of Max and role of c-Myc during erythroid and myelomonocytic differentiation of K562 cells. Oncogene. 1995;10:1659–65.

    CAS  PubMed  Google Scholar 

  45. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al. c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA. 1997;94:6658–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schweighoffer E, Tybulewicz VL. Signalling for B cell survival. Curr Opin Cell Biol. 2018;51:8–14.

    Article  CAS  PubMed  Google Scholar 

  47. Ahearn JM, Fischer MB, Croix D, Goerg S, Ma M, Xia J, et al. Disruption of the Cr2 locus results in a reduction in B-1a cells and in an impaired B cell response to T-dependent antigen. Immunity. 1996;4:251–62.

    Article  CAS  PubMed  Google Scholar 

  48. Cherukuri A, Cheng PC, Pierce SK. The role of the CD19/CD21 complex in B cell processing and presentation of complement-tagged antigens. J Immunol. 2001;167:163–72.

    Article  CAS  PubMed  Google Scholar 

  49. Perez-Olivares M, Trento A, Rodriguez-Acebes S, Gonzalez-Acosta D, Fernandez-Antoran D, Roman-Garcia S, et al. Functional interplay between c-Myc and Max in B lymphocyte differentiation. EMBO Rep. 2018;19:e45770.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17:1115–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B. A global transcriptional regulatory role for c-Myc in Burkitt’s lymphoma cells. Proc Natl Acad Sci USA. 2003;100:8164–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  53. Vereshchagina LA, Tolnay M, Tsokos GC. Multiple transcription factors regulate the inducible expression of the human complement receptor 2 promoter. J Immunol. 2001;166:6156–63.

    Article  CAS  PubMed  Google Scholar 

  54. Ng HL, Taylor RL, Cheng J, Abraham LJ, Quail E, Cruickshank MN, et al. Notch signaling induces a transcriptionally permissive state at the Complement C3d Receptor 2 (CR2) promoter in a pre-B cell model. Mol Immunol. 2020;128:150–64.

    Article  CAS  PubMed  Google Scholar 

  55. Ulgiati D, Pham C, Holers VM. Functional analysis of the human complement receptor 2 (CR2/CD21) promoter: characterization of basal transcriptional mechanisms. J Immunol. 2002;168:6279–85.

    Article  CAS  PubMed  Google Scholar 

  56. Tolnay M, Vereshchagina LA, Tsokos GC. NF-kappaB regulates the expression of the human complement receptor 2 gene. J Immunol. 2002;169:6236–43.

    Article  CAS  PubMed  Google Scholar 

  57. Kanda K, Hu HM, Zhang L, Grandchamps J, Boxer LM. NF-kappa B activity is required for the deregulation of c-myc expression by the immunoglobulin heavy chain enhancer. J Biol Chem. 2000;275:32338–46.

    Article  CAS  PubMed  Google Scholar 

  58. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20:2096–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abate F, Ambrosio MR, Mundo L, Laginestra MA, Fuligni F, Rossi M, et al. Distinct viral and mutational spectrum of endemic Burkitt lymphoma. PLoS Pathog. 2015;11:e1005158.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kaymaz Y, Oduor CI, Yu H, Otieno JA, Ong’echa JM, Moormann AM, et al. Comprehensive transcriptome and mutational profiling of endemic Burkitt lymphoma reveals EBV type-specific differences. Mol Cancer Res. 2017;15:563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Grande BM, Gerhard DS, Jiang A, Griner NB, Abramson JS, Alexander TB, et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood. 2019;133:1313–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin DC, Meng X, Hazawa M, Nagata Y, Varela AM, Xu L, et al. The genomic landscape of nasopharyngeal carcinoma. Nat Genet. 2014;46:866–71.

    Article  CAS  PubMed  Google Scholar 

  63. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  CAS  PubMed  Google Scholar 

  64. Piris MA, Medeiros LJ, Chang KC. Hodgkin lymphoma: a review of pathological features and recent advances in pathogenesis. Pathology. 2020;52:154–65.

  65. Price AM, Messinger JE, Luftig MA. c-Myc represses transcription of the Epstein-Barr virus latent membrane protein 1 early after primary B cell infection. J Virol. 2018;92:e01178-17.

  66. Jochner N, Eick D, Zimber-Strobl U, Pawlita M, Bornkamm GW, Kempkes B. Epstein-Barr virus nuclear antigen 2 is a transcriptional suppressor of the immunoglobulin mu gene: implications for the expression of the translocated c-myc gene in Burkitt’s lymphoma cells. Embo J. 1996;15:375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaiser C, Laux G, Eick D, Jochner N, Bornkamm GW, Kempkes B. The proto-oncogene c-myc is a direct target gene of Epstein-Barr virus nuclear antigen 2. J Virol. 1999;73:4481–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bajaj R, Xu F, Xiang B, Wilcox K, Diadamo AJ, Kumar R, et al. Evidence-based genomic diagnosis characterized chromosomal and cryptic imbalances in 30 elderly patients with myelodysplastic syndrome and acute myeloid leukemia. Mol Cytogenet. 2011;4:3.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kalchschmidt JS, Bashford-Rogers R, Paschos K, Gillman AC, Styles CT, Kellam P, et al. Epstein-Barr virus nuclear protein EBNA3C directly induces expression of AID and somatic mutations in B cells. J Exp Med. 2016;213:921–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garcia-Gutierrez L, Bretones G, Molina E, Arechaga I, Symonds C, Acosta JC, et al. Myc stimulates cell cycle progression through the activation of Cdk1 and phosphorylation of p27. Sci Rep. 2019;9:18693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barreto V, Reina-San-Martin B, Ramiro AR, McBride KM, Nussenzweig MC. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol Cell. 2003;12:501–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by grants PID2020-115903GB-100 to JL and MDD, RTI2018-095673-B-I00 to JRR, PID2019-107551RB-I00 to VG-Y, PID2020-119567RB-I00 to RM, PID2020-117539GB-I00 to IV and PID2019-106773RB-I00 to ARR, all funded by MCIN/AEI/10.13039/501100011033/, Spanish Government, and by “FEDER, Una manera de hacer Europa”, European Union, and by La Caixa HR17-0244 grant to AR. LQ and VJ were recipients of F.P.U. program and Universidad de Cantabria fellowships, respectively. LG-G was a fellow of the Maria Zambrano program, Spanish Government. We are grateful to Maria Aramburu and Patricia Arribas for technical help, Santiago Montes for useful comments and Victor Campa por assistance in microscopy and image processing.

Author information

Authors and Affiliations

Authors

Contributions

EM, LG-G: formal analysis, investigation, writing. VJ, MP-O, VG-Y, RB, AVM, JCA and LQ: formal analysis, investigation, resources. DU, RM, JRR, and IV: formal analysis and resources. IMA, AR: formal analysis, resources, editing. MDD: formal analysis, funding. JL: experimental design, formal analysis, writing, funding acquisition.

Corresponding author

Correspondence to Javier León.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, E., García-Gutiérrez, L., Junco, V. et al. MYC directly transactivates CR2/CD21, the receptor of the Epstein–Barr virus, enhancing the viral infection of Burkitt lymphoma cells. Oncogene 42, 3358–3370 (2023). https://doi.org/10.1038/s41388-023-02846-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02846-9

Search

Quick links