Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mesenchymal stromal cells confer breast cancer doxorubicin resistance by producing hyaluronan

Abstract

Chemotherapy resistance represents a major cause of therapeutic failure and mortality in cancer patients. Mesenchymal stromal cells (MSCs), an integral component of tumor microenvironment, are known to promote drug resistance. However, the detailed mechanisms remain to be elucidated. Here, we found that MSCs confer breast cancer resistance to doxorubicin by diminishing its intratumoral accumulation. Hyaluronan (HA), a major extracellular matrix (ECM) product of MSCs, was found to mediate the chemoresistant effect. The chemoresistant effect of MSCs was abrogated when hyaluronic acid synthase 2 (HAS2) was depleted or inhibited. Exogenous HA also protected tumor grafts from doxorubicin. Molecular dynamics simulation analysis indicates that HA can bind with doxorubicin, mainly via hydrophobic and hydrogen bonds, and thus reduce its entry into breast cancer cells. This mechanism is distinct from the reported chemoresistant effect of HA via its receptor on cell surface. High HA serum levels were also found to be positively associated with chemoresistance in breast cancer patients. Our findings indicate that the HA-doxorubicin binding dynamics can confer cancer cells chemoresistance. Reducing HA may enhance chemotherapy efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MSCs protect breast cancer cells from doxorubicin.
Fig. 2: MSCs supernatant reduces doxorubicin content in breast cancer cells.
Fig. 3: Hyaluronan produced by MSCs protects cancer cells from doxorubicin.
Fig. 4: HA mediates the doxorubicin resistant effect of MSCs in vivo.
Fig. 5: HA impedes cellular entry of doxorubicin through direct binding.
Fig. 6: 4-MU strengthens antitumor effects of doxorubicin, pirarubicin and epirubicin.
Fig. 7: Association of HA levels with chemoresistance in breast cancer patients.
Fig. 8: A schematic model depicting the mechanism by which HA secreted from MSCs confer breast cancer doxorubicin resistance.

Similar content being viewed by others

Data availability

All original data are available from the authors under request

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Harbeck N, Gnant M. Breast cancer. Lancet. 2017;389:1134–50.

    PubMed  Google Scholar 

  3. Ostman A. The tumor microenvironment controls drug sensitivity. Nat Med. 2012;18:1332–4.

    PubMed  Google Scholar 

  4. Meads MB, Gatenby RA, Dalton WS. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer. 2009;9:665–74.

    CAS  PubMed  Google Scholar 

  5. Muerkoster S, Wegehenkel K, Arlt A, Witt M, Sipos B, Kruse ML, et al. Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and in terleukin-1 beta. Cancer Res. 2004;64:1331–7.

    PubMed  Google Scholar 

  6. Wang W, Kryczek I, Dostál L, Lin H, Tan L, Zhao L, et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian. Cancer Cell. 2016;165:1092–105.

    CAS  Google Scholar 

  7. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell. 2018;172:841–56.e816.

    CAS  PubMed  Google Scholar 

  8. Biffi G, Tuveson DA. Diversity and biology of cancer-associated fibroblasts. Physiol Rev. 2021;101:147–76.

    CAS  PubMed  Google Scholar 

  9. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18:99–115.

    CAS  PubMed  Google Scholar 

  10. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    CAS  PubMed  Google Scholar 

  11. Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2016;16:35–52.

    PubMed  Google Scholar 

  12. Roodhart Jeanine ML, Daenen Laura GM, Stigter Edwin CA, Prins H-J, Gerrits J, Houthuijzen Julia M, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20:370–83.

    CAS  PubMed  Google Scholar 

  13. Zheng Z, Li YN, Jia S, Zhu M, Cao L, Tao M, et al. Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3. Nat Commun. 2021;12:6202.

    PubMed  PubMed Central  Google Scholar 

  14. Quante M, Tu SP, Tomita H, Gonda T, Wang SS, Takashi S, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19:257–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Coffman LG, Pearson AT, Frisbie LG, Freeman Z, Christie E, Bowtell DD, et al. Ovarian carcinoma-associated mesenchymal stem cells arise from tissue-specific normal stroma. Stem Cells. 2019;37:257–69.

    CAS  PubMed  Google Scholar 

  16. Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, et al. Osteopontin mediates an MZF1-TGF-beta1-dependent transformation of mesenchymal stem cells into cancer-associated fibroblasts in breast cancer. Oncogene. 2015;34:4821–33.

    CAS  PubMed  Google Scholar 

  17. Ren G, Zhao X, Wang Y, Zhang X, Chen X, Xu C, et al. CCR2-dependent recruitment of macrophages by tumor-educated mesenchymal stromal cells promotes tumor development and is mimicked by TNFalpha. Cell Stem Cell. 2012;11:812–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. 2012;72:5130–40.

    CAS  PubMed  Google Scholar 

  19. Ippolito L, Morandi A, Taddei ML, Parri M, Comito G, Iscaro A, et al. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene. 2019;38:5339–55.

    CAS  PubMed  Google Scholar 

  20. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.

    CAS  PubMed  Google Scholar 

  21. Revet I, Feeney L, Bruguera S, Wilson W, Dong TK, Oh DH, et al. Functional relevance of the histone gamma H2Ax in the response to DNA damaging agents. Proc Natl Acad Sci USA. 2011;108:8663–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bellamy WT, Dalton WS, Kailey JM, Gleason MC, Mccloskey TM, Dorr RT, et al. Verapamil reversal of doxorubicin resistance in multidrug-resistant human myeloma cells and association with drug accumulation and DNA damage. Cancer Res. 1988;48:6365–70.

    CAS  PubMed  Google Scholar 

  23. Kauffman MK, Kauffman ME, Zhu H, Jia Z, Li YR. Fluorescence-based assays for measuring doxorubicin in biological systems. React Oxyg Species. 2016;2:432–9.

    Google Scholar 

  24. Triller N, Korosec P, Kern I, Kosnik M, Debeljak A. Multidrug resistance, in small cell lung cancer: expression of P-glycoprotein, multidrug resistance protein 1 and lung resistance protein in chemo-naive patients and in relapsed disease. Lung Cancer. 2006;54:235–40.

    PubMed  Google Scholar 

  25. Nooter K, delaRiviere GB, Look MP, vanWingerden KE, HenzenLogmans SC, Scheper RJ, et al. The prognostic significance of expression of the multidrug resistance associated protein (MRP) in primary breast cancer. Br J Cancer. 1997;76:486–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Doyle LA, Yang WD, Abruzzo LV, Krogmann T, Gao YM, Rishi AK, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA. 1998;95:15665–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Qu C, Rilla K, Tammi R, Tammi M, Kroger H, Lammi MJ. Extensive CD44-dependent hyaluronan coats on human bone marrow-derived mesenchymal stem cells produced by hyaluronan synthases HAS1, HAS2 and HAS3. Int J Biochem Cell Biol. 2014;48:45–54.

    CAS  PubMed  Google Scholar 

  28. Arasu UT, Karna R, Harkonen K, Oikari S, Koistinen A, Kroger H, et al. Human mesenchymal stem cells secrete hyaluronan-coated extracellular vesicles. Matrix Biol. 2017;64:54–68.

    CAS  PubMed  Google Scholar 

  29. Jha AK, Xu XA, Duncan RL, Jia XQ. Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials. 2011;32:2466–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen J, Meng JL, Jin C, Mo F, Ding Y, Gao XM, et al. 4-Methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy for chronic prostatitis. Prostate. 2021;81:1078–90.

    CAS  PubMed  Google Scholar 

  31. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.

    CAS  PubMed  Google Scholar 

  32. Raz Y, Cohen N, Shani O, Bell RE, Novitskiy SV, Abramovitz L, et al. Bone marrow-derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med. 2018;215:3075–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lankelma J, Dekker H, Luque FR, Luykx S, Hoekman K, van der Valk P, et al. Doxorubicin gradients in human breast cancer. Clin Cancer Res. 1999;5:1703–7.

    CAS  PubMed  Google Scholar 

  34. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharm. 2013;65:157–70.

    CAS  Google Scholar 

  35. Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol. 2015;25:198–213.

    PubMed  Google Scholar 

  36. Velaei K, Samadi N, Barazvan B, Rad JS. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast. 2016;30:92–100.

    PubMed  Google Scholar 

  37. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009;15:68–74.

    CAS  PubMed  Google Scholar 

  38. Tsujino T, Seshimo I, Yamamoto H, Ngan CY, Ezumi K, Takemasa I, et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res. 2007;13:2082–90.

    CAS  PubMed  Google Scholar 

  39. Cox TR. The matrix in cancer. Nat Rev Cancer. 2021;21:217–38.

    CAS  PubMed  Google Scholar 

  40. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bohaumilitzky L, Huber AK, Stork EM, Wengert S, Woelfl F, Boehm H. A trickster in disguise: Hyaluronan’s ambivalent roles in the matrix. Front Oncol. 2017;7:242.

    PubMed  PubMed Central  Google Scholar 

  42. Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019;286:2883–908.

    CAS  PubMed  Google Scholar 

  43. Price ZK, Lokman NA, Ricciardelli C. Differing roles of hyaluronan molecular weight on cancer cell behavior and chemotherapy resistance. Cancers. 2018;10:482–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, et al. High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature. 2013;499:346–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dominguez-Gutierrez PR, Kwenda EP, Donelan W, O’Malley P, Crispen PL, Kusmartsev S. Hyal2 expression in tumor-associated myeloid cells mediates cancer-related inflammation in bladder cancer. Cancer Res. 2021;81:648–57.

    CAS  PubMed  Google Scholar 

  46. Schmaus A, Klusmeier S, Rothley M, Dimmler A, Sipos B, Faller G, et al. Accumulation of small hyaluronan oligosaccharides in tumour interstitial fluid correlates with lymphatic invasion and lymph node metastasis. Br J Cancer. 2014;111:559–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu D, Pearlman E, Diaconu E, Guo K, Mori H, Haqqi T, et al. Expression of hyaluronidase by tumor cells induces angiogenesis in vivo. Proc Natl Acad Sci USA. 1996;93:7832–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Carvalho AM, Reis RL, Pashkuleva I. Hyaluronan receptors as mediators and modulators of the tumor microenvironment. Adv Healthcare Mater. 2023;12:e2202118.

    Google Scholar 

  49. Tammi MI, Oikari S, Pasonen-Seppanen S, Rilla K, Auvinen P, Tammi RH. Activated hyaluronan metabolism in the tumor matrix—causes and consequences. Matrix Biol. 2019;78-79:147–64.

    CAS  PubMed  Google Scholar 

  50. Toole BP, Slomiany MG. Hyaluronan, CD44 and emmprin: partners in cancer cell chemoresistance. Drug Resist Updat. 2008;11:110–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ohashi R, Takahashi F, Cui R, Yoshioka M, Gu T, Sasaki S, et al. Interaction between CD44 and hyaluronate induces chemoresistance in non-small cell lung cancer cell. Cancer Lett. 2007;252:225–34.

    CAS  PubMed  Google Scholar 

  52. Gilg AG, Tye SL, Tolliver LB, Wheeler WG, Visconti RP, Duncan JD, et al. Targeting hyaluronan interactions in malignant gliomas and their drug-resistant multipotent progenitors. Clin Cancer Res. 2008;14:1804–13.

    CAS  PubMed  Google Scholar 

  53. Compagnone M, Gatti V, Presutti D, Ruberti G, Fierro C, Markert EK, et al. DeltaNp63-mediated regulation of hyaluronic acid metabolism and signaling supports HNSCC tumorigenesis. Proc Natl Acad Sci USA. 2017;114:13254–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Provenzano PP, Hingorani SR. Hyaluronan, fluid pressure, and stromal resistance in pancreas cancer. Br J Cancer. 2013;108:1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N, Frese KK, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut. 2013;62:112–20.

    CAS  PubMed  Google Scholar 

  56. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21:418–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshevlotsky EM, et al. Phase Ib study of pegylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. 2016;22:2848–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tammi RH, Passi AG, Rilla K, Karousou E, Vigetti D, Makkonen K, et al. Transcriptional and post-translational regulation of hyaluronan synthesis. FEBS J. 2011;278:1419–28.

    CAS  PubMed  Google Scholar 

  59. Jokela TA, Karna R, Makkonen KM, Laitinen JT, Tammi RH, Tammi MI. Extracellular UDP-glucose activates P2Y14 receptor and induces signal transducer and activator of transcription 3 (STAT3) Tyr705 phosphorylation and binding to hyaluronan synthase 2 (HAS2) promoter, stimulating hyaluronan synthesis of keratinocytes. J Biol Chem. 2014;289:18569–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Jokela T, Karna R, Rauhala L, Bart G, Pasonen-Seppanen S, Oikari S, et al. Human keratinocytes respond to extracellular UTP by induction of hyaluronan synthase 2 expression and increased hyaluronan synthesis. J Biol Chem. 2017;292:4861–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rauhala L, Jokela T, Karna R, Bart G, Takabe P, Oikari S, et al. Extracellular ATP activates hyaluronan synthase 2 (HAS2) in epidermal keratinocytes via P2Y2, Ca(2+) signaling, and MAPK pathways. Biochem J. 2018;475:1755–72.

    CAS  PubMed  Google Scholar 

  62. Wang G, Cao K, Liu K, Xue Y, Roberts AI, Li F, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ. 2017;25:1209–23.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from National Natural Science Foundation of China (81930085, 31961133024, 32150710523, 31900635, 82202032), the National Key R&D Program of China (2021YFA110060), Jiangsu Province International Joint Laboratory for Regenerative Medicine Fund, State Key Laboratory of Radiation Medicine and Protection, Soochow University (GZN1201902) and Suzhou Foreign Academician Workstation Fund (SWY20220). We especially thank Dr. Jian Jin for providing expert technical assistance in molecular dynamics simulation.

Author information

Authors and Affiliations

Authors

Contributions

ZHL: conception and design, collection and assembly of data, animal experiments, data analysis and interpretation, and manuscript writing. PBH, JKF: conception and design, data analysis and interpretation. JY Zhu: molecular dynamics simulations, data analysis and interpretation. JM Zha and YYD: contribution of key reagents. RL, MQZ, LJC and CF: animal experiments. PSL and GM: data analysis and interpretation. CSS and YFS: conception and design, manuscript writing, administrative support and financial support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Changshun Shao or Yufang Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hou, P., Fang, J. et al. Mesenchymal stromal cells confer breast cancer doxorubicin resistance by producing hyaluronan. Oncogene 42, 3221–3235 (2023). https://doi.org/10.1038/s41388-023-02837-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02837-w

This article is cited by

Search

Quick links