Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Glucose-induced and ChREBP: MLX-mediated lipogenic program promotes hepatocellular carcinoma development

Abstract

The Carbohydrate Response Element (ChoRE) Binding Protein (ChREBP) and its binding partner Max-like protein X (MLX) mediate transcription of lipogenic genes under glucose-rich conditions. Dysregulation of glucose and lipid metabolism frequently occurs in cancers, including Hepatocellular Carcinomas (HCCs). However, it is currently unclear whether the glucose-induced lipogenic program plays a role in the development of HCCs. Here, we show that MLX expression is elevated in HCC specimens and downregulation of MLX expression inhibits proliferation of HCC cells. In mice, liver-specific knockout of Mlx results in dramatic decrease in the expression of lipogenic genes and lipid levels in circulation. Interestingly, in the absence of Mlx, the development of tumors in multiple HCC models, such as diethylnitrosamine (DEN) treatment and hydrodynamic injection of oncogenes (AKT/RAS or CTNNB1/RAS), is robustly blocked. However, a high-fat diet can partially restore tumorigenesis in Mlx-deficient livers, indicating a critical role of lipid synthesis in HCC development. In addition, liver-specific expression of a dominant negative MLX (dnMLX) via adeno-associated virus effectively blocks tumorigenesis in mice. Thus, the glucose-induced lipogenic program is required in the development of HCC, and the ChREBP: MLX transcription factors serve as a potential target for cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MLX expression is upregulated in clinical and experimental HCC specimens.
Fig. 2: MLX knockout significantly inhibits tumor growth of HCC cells.
Fig. 3: Liver-specific knockout of Mlx disturbs fatty acids homeostasis.
Fig. 4: Liver-specific Mlx deletion inhibits tumorigenesis.
Fig. 5: High-fat diet restored tumorigenesis in Mlx KO mice.
Fig. 6: Hepatocarcinogenesis in mice is repressed dnMLX.

Similar content being viewed by others

Data availability

The raw data of wild type and Mlx KO RNA-seq were deposited in the National Genomics Data Center (PRJCA019322).

References

  1. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7:6.

    Article  PubMed  Google Scholar 

  2. McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2021;73:4–13.

    Article  CAS  PubMed  Google Scholar 

  3. Ganesan P, Kulik LM. Hepatocellular carcinoma: new developments. Clin Liver Dis. 2023;27:85–102.

    Article  PubMed  Google Scholar 

  4. Sugawara Y, Hibi T. Surgical treatment of hepatocellular carcinoma. Biosci Trends. 2021;15:138–41.

    Article  PubMed  Google Scholar 

  5. Llovet JM, Fuster J, Bruix J. Prognosis of hepatocellular carcinoma. Hepatogastroenterology. 2002;49:7–11.

    PubMed  Google Scholar 

  6. Villanueva A. Hepatocellular carcinoma. N. Engl J Med. 2019;380:1450–62.

    Article  CAS  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  8. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56:952–64.

    Article  CAS  PubMed  Google Scholar 

  9. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology. 2018;67:123–33.

    Article  CAS  PubMed  Google Scholar 

  10. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA Cancer J Clin. 2010;60:207–21.

    Article  PubMed  Google Scholar 

  11. Mitanchez D, Doiron B, Chen R, Kahn A. Glucose-stimulated genes and prospects of gene therapy for type I diabetes. Endocr Rev. 1997;18:520–40.

    CAS  PubMed  Google Scholar 

  12. Oosterveer MH, Schoonjans K. Hepatic glucose sensing and integrative pathways in the liver. Cell Mol Life Sci. 2014;71:1453–67.

    Article  CAS  PubMed  Google Scholar 

  13. Shih HM, Liu Z, Towle HC. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem. 1995;270:21991–7.

    Article  CAS  PubMed  Google Scholar 

  14. Yamashita H, Takenoshita M, Sakurai M, Bruick RK, Henzel WJ, Shillinglaw W, et al. A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci USA. 2001;98:9116–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Filhoulaud G, Guilmeau S, Dentin R, Girard J, Postic C. Novel insights into ChREBP regulation and function. Trends Endocrinol Metab. 2013;24:257–68.

    Article  CAS  PubMed  Google Scholar 

  16. Abdul-Wahed A, Guilmeau S, Postic C. Sweet sixteenth for ChREBP: established roles and future goals. Cell Metab. 2017;26:324–41.

    Article  CAS  PubMed  Google Scholar 

  17. Stoeckman AK, Ma L, Towle HC. Mlx is the functional heteromeric partner of the carbohydrate response element-binding protein in glucose regulation of lipogenic enzyme genes. J Biol Chem. 2004;279:15662–9.

    Article  CAS  PubMed  Google Scholar 

  18. Stoltzman CA, Peterson CW, Breen KT, Muoio DM, Billin AN, Ayer DE. Glucose sensing by MondoA: Mlx complexes: a role for hexokinases and direct regulation of thioredoxin-interacting protein expression. Proc Natl Acad Sci USA. 2008;105:6912–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eilers AL, Sundwall E, Lin M, Sullivan AA, Ayer DE. A novel heterodimerization domain, CRM1, and 14-3-3 control subcellular localization of the MondoA-Mlx heterocomplex. Mol Cell Biol. 2002;22:8514–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahn B, Soundarapandian MM, Sessions H, Peddibhotla S, Roth GP, Li JL, et al. MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling. J Clin Invest. 2016;126:3567–79.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ran H, Lu Y, Zhang Q, Hu Q, Zhao J, Wang K, et al. MondoA is required for normal myogenesis and regulation of the skeletal muscle glycogen content in mice. Diabetes Metab J. 2021;45:797.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baraille F, Planchais J, Dentin R, Guilmeau S, Postic C. Integration of ChREBP-mediated glucose sensing into whole body metabolism. Physiology. 2015;30:428–37.

    Article  CAS  PubMed  Google Scholar 

  23. Airley RE, McHugh P, Evans AR, Harris B, Winchester L, Buffa FM, et al. Role of carbohydrate response element-binding protein (ChREBP) in generating an aerobic metabolic phenotype and in breast cancer progression. Br J Cancer. 2014;110:715–23.

    Article  CAS  PubMed  Google Scholar 

  24. Carroll PA, Diolaiti D, McFerrin L, Gu H, Djukovic D, Du J, et al. Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell. 2015;27:271–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ribback S, Che L, Pilo MG, Cigliano A, Latte G, Pes GM, et al. Oncogene-dependent addiction to carbohydrate-responsive element binding protein in hepatocellular carcinoma. Cell Cycle. 2018;17:1496–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nuernberger V, Mortoga S, Metzendorf C, Burkert C, Ehricke K, Knuth E, et al. Hormonally induced hepatocellular carcinoma in diabetic wild type and carbohydrate responsive element binding protein knockout mice. Cells. 2021;10:2787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tong X, Zhao F, Mancuso A, Gruber JJ, Thompson CB. The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc Natl Acad Sci USA. 2009;106:21660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang H, Dolezal JM, Kulkarni S, Lu J, Mandel J, Jackson LE, et al. Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice. J Biol Chem. 2018;293:14740–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019;567:257–61.

    Article  CAS  PubMed  Google Scholar 

  30. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69:7385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun R, Zhang Z, Bao R, Guo X, Gu Y, Yang W, et al. Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. J Hepatol. 2022;77:453–66.

    Article  CAS  PubMed  Google Scholar 

  32. Yamashita T, Honda M, Takatori H, Nishino R, Minato H, Takamura H, et al. Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol. 2009;50:100–10.

    Article  CAS  PubMed  Google Scholar 

  33. Guri Y, Colombi M, Dazert E, Hindupur SK, Roszik J, Moes S, et al. mTORC2 promotes tumorigenesis via lipid synthesis. Cancer Cell. 2017;32:807–23.e12.

    Article  CAS  PubMed  Google Scholar 

  34. Suda T, Liu D. Hydrodynamic gene delivery: its principles and applications. Mol Ther. 2007;15:2063–9.

    Article  CAS  PubMed  Google Scholar 

  35. Qi S, Zhu Y, Liu X, Li P, Wang Y, Zeng Y, et al. WWC proteins mediate LATS1/2 activation by Hippo kinases and imply a tumor suppression strategy. Mol Cell. 2022;82:1850–64.e7.

    Article  CAS  PubMed  Google Scholar 

  36. Tang M, Zhao Y, Zhao J, Wei S, Liu M, Zheng N, et al. Liver cancer heterogeneity modeled by in situ genome editing of hepatocytes. Sci Adv. 2022;8:eabn5683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Harada N, Oshima H, Katoh M, Tamai Y, Oshima M, Taketo MM. Hepatocarcinogenesis in mice with beta-catenin and Ha-ras gene mutations. Cancer Res. 2004;64:48–54.

    Article  CAS  PubMed  Google Scholar 

  38. Ho C, Wang C, Mattu S, Destefanis G, Ladu S, Delogu S, et al. AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c-Myc pathways. Hepatology. 2012;55:833–45.

    Article  CAS  PubMed  Google Scholar 

  39. Liu YT, Tseng TC, Soong RS, Peng CY, Cheng YH, Huang SF, et al. A novel spontaneous hepatocellular carcinoma mouse model for studying T-cell exhaustion in the tumor microenvironment. J Immunother Cancer. 2018;6:144.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tolba R, Kraus T, Liedtke C, Schwarz M, Weiskirchen R. Diethylnitrosamine (DEN)-induced carcinogenic liver injury in mice. Lab Anim. 2015;49:59–69.

    Article  CAS  PubMed  Google Scholar 

  41. Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chakravarthy MV, Pan Z, Zhu Y, Tordjman K, Schneider JG, Coleman T, et al. “New” hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab. 2005;1:309–22.

    Article  CAS  PubMed  Google Scholar 

  43. Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140:197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma L, Tsatsos NG, Towle HC. Direct role of ChREBP. Mlx in regulating hepatic glucose-responsive genes. J Biol Chem. 2005;280:12019–27.

    Article  CAS  PubMed  Google Scholar 

  45. Iizuka K, Takeda J, Horikawa Y. Hepatic overexpression of dominant negative Mlx improves metabolic profile in diabetes-prone C57BL/6J mice. Biochem Biophys Res Commun. 2009;379:499–504.

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer. 2021;21:541–57.

    Article  CAS  PubMed  Google Scholar 

  47. Kawaguchi T, Takenoshita M, Kabashima T, Uyeda K. Glucose and cAMP regulate the L-type pyruvate kinase gene by phosphorylation/dephosphorylation of the carbohydrate response element binding protein. Proc Natl Acad Sci USA. 2001;98:13710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kabashima T, Kawaguchi T, Wadzinski BE, Uyeda K. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc Natl Acad Sci USA. 2003;100:5107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arden C, Tudhope SJ, Petrie JL, Al-Oanzi ZH, Cullen KS, Lange AJ, et al. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem J. 2012;443:111–23.

    Article  CAS  PubMed  Google Scholar 

  50. Li MV, Chen W, Harmancey RN, Nuotio-Antar AM, Imamura M, Saha P, et al. Glucose-6-phosphate mediates activation of the carbohydrate responsive binding protein (ChREBP). Biochem Biophys Res Commun. 2010;395:395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dentin R, Tomas-Cobos L, Foufelle F, Leopold J, Girard J, Postic C, et al. Glucose 6-phosphate, rather than xylulose 5-phosphate, is required for the activation of ChREBP in response to glucose in the liver. J Hepatol. 2012;56:199–209.

    Article  CAS  PubMed  Google Scholar 

  52. Yu FX, Chai TF, He H, Hagen T, Luo Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem. 2010;285:25822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science. 2011;332:1519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jeong YS, Kim D, Lee YS, Kim HJ, Han JY, Im SS, et al. Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS ONE. 2011;6:e22544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol. 2017;13:710–30.

    Article  CAS  PubMed  Google Scholar 

  56. Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 2012;15:725–38.

    Article  CAS  PubMed  Google Scholar 

  57. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008;8:224–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang Y, Viscarra J, Kim SJ, Sul HS. Transcriptional regulation of hepatic lipogenesis. Nat Rev Mol Cell Biol. 2015;16:678–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. O’Shea JM, Ayer DE. Coordination of nutrient availability and utilization by MAX- and MLX-centered transcription networks. Cold Spring Harb Perspect Med. 2013;3:a014258.

    PubMed  PubMed Central  Google Scholar 

  60. Jois T, Chen W, Howard V, Harvey R, Youngs K, Thalmann C, et al. Deletion of hepatic carbohydrate response element binding protein (ChREBP) impairs glucose homeostasis and hepatic insulin sensitivity in mice. Mol Metab. 2017;6:1381–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi JH, Lu JY, Chen HY, Wei CC, Xu X, Li H, et al. Liver ChREBP protects against fructose-induced glycogenic hepatotoxicity by regulating L-type pyruvate kinase. Diabetes. 2020;69:591–602.

    Article  CAS  PubMed  Google Scholar 

  62. Chai TF, Hong SY, He H, Zheng L, Hagen T, Luo Y, et al. A potential mechanism of metformin-mediated regulation of glucose homeostasis: inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cell Signal. 2012;24:1700–5.

    Article  CAS  PubMed  Google Scholar 

  63. Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem. 1999;274:305–15.

    Article  CAS  PubMed  Google Scholar 

  64. Hunt LC, Xu B, Finkelstein D, Fan Y, Carroll PA, Cheng PF, et al. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling. Genes Dev. 2015;29:2475–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kovacsics D, Raper J. Transient expression of proteins by hydrodynamic gene delivery in mice. J Vis Exp. 2014;87:51481.

    Google Scholar 

  66. Schneider C, Teufel A, Yevsa T, Staib F, Hohmeyer A, Walenda G, et al. Adaptive immunity suppresses formation and progression of diethylnitrosamine-induced liver cancer. Gut. 2012;61:1733–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology of China (National Key R&D program, 2018YFA0800304 and 2020YFA0803202), the Science and Technology Commission of Shanghai Municipality (21S11905000), and the Shanghai Municipal Health Commission (2022XD049) to FXY. This work is also supported by the Medical Science Data Center in Shanghai Medical College of Fudan University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization FXY and DY; Experiments and Validation AY, PY, YZ and RZ; Bioinformatics PY, and RS; Visualization, AY, PY, YZ and RS; Writing-Original Draft, AY, PY, and FXY; Writing-Review & Editing FXY; Supervision FXY.

Corresponding author

Correspondence to Fa-Xing Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, A., Yu, P., Zhu, Y. et al. Glucose-induced and ChREBP: MLX-mediated lipogenic program promotes hepatocellular carcinoma development. Oncogene 42, 3182–3193 (2023). https://doi.org/10.1038/s41388-023-02831-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02831-2

Search

Quick links