Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenic BRAF noncanonically promotes tumor metastasis by mediating VASP phosphorylation and filopodia formation

Abstract

BRAF is frequently mutated in various cancer types and contributes to tumorigenesis and metastasis. As an important switch in RAS signaling pathway, BRAF typically enables the activation of MEK and ERK, and its mutation significantly promotes metastasis. However, whether BRAF could stimulate metastasis via a distinct manner is still unknown. Herein, we found that a portion of the BRAF protein localized at the plasma membrane and that the BRAFV600E mutation led to abundant formation of filopodia, which is a hallmark of invasive cancer cells. Mechanistically, BRAF physically interacts with the pseudopod formation-related protein Vasodilator-stimulated phosphoprotein (VASP), and BRAF specifically catalyzes VASP phosphorylation at Ser157. VASP depletion or disruption of Ser157 phosphorylation preferentially reduced the motility, invasion and metastasis of tumor cells harboring oncogenic BRAF or KRAS. Moreover, in clinical cancer tissues, BRAFV600E was positively correlated with the extent of invasion, and tissues with BRAFV600E expression exhibited elevated levels of VASP Ser157 phosphorylation. Our study therefor reveals a noncanonical mechanism by which oncogenic BRAF or KRAS promotes metastasis, suggests that VASP Ser157 phosphorylation might serve as a valuable therapeutic target in BRAF or KRAS mutant cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Subcellular localization of BRAF and its effect on cell migration.
Fig. 2: BRAF physically interacts with VASP.
Fig. 3: BRAFV600E phosphorylates VASP at Ser157.
Fig. 4: The effect of VASP on the migration of tumor cells expressing oncogenic KRAS or BRAF.
Fig. 5: Effect of VASP and VASP-S157P on tumor cell filopodia formation.
Fig. 6: VASP expression and Ser157 phosphorylation affect the metastasis of BRAFV600E-positive tumors.
Fig. 7: Correlation between clinicopathological features of patients with the BRAFV600E mutation and the VASP or VASP-S157P level.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article and its Supplementary Information Files.

References

  1. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16:281–98.

    Article  CAS  PubMed  Google Scholar 

  2. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  CAS  PubMed  Google Scholar 

  3. McGrail K, Granado-Martinez P, Esteve-Puig R, Garcia-Ortega S, Ding Y, Sanchez-Redondo S, et al. BRAF activation by metabolic stress promotes glycolysis sensitizing NRAS(Q61)-mutated melanomas to targeted therapy. Nat Commun. 2022;13:7113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yan C, Huang M, Li X, Wang T, Ling R. Relationship between BRAF V600E and clinical features in papillary thyroid carcinoma. Endocr Connect. 2019;8:988–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tabernero J, Grothey A, Van Cutsem E, Yaeger R, Wasan H, Yoshino T, et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON Study. J Clin Oncol. 2021;39:273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6:322–7.

    Article  CAS  PubMed  Google Scholar 

  7. Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, et al. Raf kinases: function, regulation and role in human cancer. Biochim Biophys Acta. 2007;1773:1196–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22:153–83.

    CAS  PubMed  Google Scholar 

  9. Posternak G, Tang X, Maisonneuve P, Jin T, Lavoie H, Daou S, et al. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nat Chem Biol. 2020;16:1170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ullah R, Yin Q, Snell AH, Wan L. RAF-MEK-ERK pathway in cancer evolution and treatment. Semin Cancer Biol. 2022;85:123–54.

    Article  CAS  PubMed  Google Scholar 

  11. Carlino MS, Haydu LE, Kakavand H, Menzies AM, Hamilton AL, Yu B, et al. Correlation of BRAF and NRAS mutation status with outcome, site of distant metastasis and response to chemotherapy in metastatic melanoma. Br J Cancer. 2014;111:292–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elisei R, Viola D, Torregrossa L, Giannini R, Romei C, Ugolini C, et al. The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab. 2012;97:4390–8.

    Article  CAS  PubMed  Google Scholar 

  13. Jones JC, Renfro LA, Al-Shamsi HO, Schrock AB, Rankin A, Zhang BY, et al. Non-V600 BRAF mutations define a clinically distinct molecular subtype of metastatic colorectal cancer. J Clin Oncol. 2017;35:2624–30.

  14. Kakarmath S, Heller HT, Alexander CA, Cibas ES, Krane JF, Barletta JA, et al. Clinical, sonographic, and pathological characteristics of RAS-positive versus BRAF-positive thyroid carcinoma. J Clin Endocrinol Metab. 2016;101:4938–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jain A, Tripathi R, Turpin CP, Wang C, Plattner R. Abl kinase regulation by BRAF/ERK and cooperation with Akt in melanoma. Oncogene. 2017;36:4585–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shin J, Watanabe S, Hoelper S, Kruger M, Kostin S, Poling J, et al. BRAF activates PAX3 to control muscle precursor cell migration during forelimb muscle development. Elife. 2016;5:e18351.

  17. Arjonen A, Kaukonen R, Ivaska J. Filopodia and adhesion in cancer cell motility. Cell Adh Migr. 2011;5:421–30.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Krause M, Gautreau A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat Rev Mol Cell Biol. 2014;15:577–90.

    Article  CAS  PubMed  Google Scholar 

  19. Vignjevic D, Schoumacher M, Gavert N, Janssen KP, Jih G, Lae M, et al. Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Res. 2007;67:6844–53.

    Article  CAS  PubMed  Google Scholar 

  20. Ferron F, Rebowski G, Lee SH, Dominguez R. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. EMBO J. 2007;26:4597–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Winkelman JD, Bilancia CG, Peifer M, Kovar DR. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin. Proc Natl Acad Sci USA. 2014;111:4121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lebrand C, Dent EW, Strasser GA, Lanier LM, Krause M, Svitkina TM, et al. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron. 2004;42:37–49.

    Article  CAS  PubMed  Google Scholar 

  23. Ali M, Rogers LK, Pitari GM. Serine phosphorylation of vasodilator-stimulated phosphoprotein (VASP) regulates colon cancer cell survival and apoptosis. Life Sci. 2015;123:1–8.

    Article  CAS  PubMed  Google Scholar 

  24. Doppler HR, Bastea LI, Lewis-Tuffin LJ, Anastasiadis PZ, Storz P. Protein kinase D1-mediated phosphorylations regulate vasodilator-stimulated phosphoprotein (VASP) localization and cell migration. J Biol Chem. 2013;288:24382–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ali M, Zuzga DS, Pitari GM. Differential Ser phosphorylation of vasodilator-stimulated phosphoprotein regulates colon tumor formation and growth. Life Sci. 2021;264:118671.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang JW, Su K, Shi WT, Wang Y, Hu PC, Wang Y, et al. Matrine inhibits the adhesion and migration of BCG823 gastric cancer cells by affecting the structure and function of the vasodilator-stimulated phosphoprotein (VASP). Acta Pharm Sin. 2013;34:1084–92.

    Article  Google Scholar 

  27. Zhang Q, Liang H, Zhao X, Zheng L, Li Y, Gong J, et al. PTENepsilon suppresses tumor metastasis through regulation of filopodia formation. EMBO J. 2021;40:e105806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Andreadi C, Noble C, Patel B, Jin H, Aguilar HM, Balmanno K, et al. Regulation of MEK/ERK pathway output by subcellular localization of B-Raf. Biochem Soc Trans. 2012;40:67–72.

    Article  CAS  PubMed  Google Scholar 

  29. Hasegawa Y, Murph M, Yu S, Tigyi G, Mills GB. Lysophosphatidic acid (LPA)-induced vasodilator-stimulated phosphoprotein mediates lamellipodia formation to initiate motility in PC-3 prostate cancer cells. Mol Oncol. 2008;2:54–69.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhao T, Liang X, Chen J, Bao Y, Wang A, Gan X, et al. ANGPTL3 inhibits renal cell carcinoma metastasis by inhibiting VASP phosphorylation. Biochem Biophys Res Commun. 2019;516:880–7.

    Article  CAS  PubMed  Google Scholar 

  31. Bellio H, Fumet JD, Ghiringhelli F. Targeting BRAF and RAS in colorectal cancer. Cancers. 2021;13:2201.

  32. Yaeger R, Corcoran RB. Targeting Alterations in the RAF-MEK Pathway. Cancer Discov. 2019;9:329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yao Z, Torres NM, Tao A, Gao Y, Luo L, Li Q, et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell. 2015;28:370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464:427–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, Chang MT, et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature. 2017;548:234–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science. 2003;302:1704–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lin YL, Lei YT, Hong CJ, Hsueh YP. Syndecan-2 induces filopodia and dendritic spine formation via the neurofibromin-PKA-Ena/VASP pathway. J Cell Biol. 2007;177:829–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Damiano-Guercio J, Kurzawa L, Mueller J, Dimchev G, Schaks M, Nemethova M, et al. Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. Elife. 2020;9:e55351.

  39. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med. 2010;363:809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson DB, Menzies AM, Zimmer L, Eroglu Z, Ye F, Zhao S, et al. Acquired BRAF inhibitor resistance: A multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Eur J Cancer. 2015;51:2792–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Farnsworth DA, Inoue Y, Johnson FD, de Rappard-Yuswack G, Lu D, Shi R, et al. MEK inhibitor resistance in lung adenocarcinoma is associated with addiction to sustained ERK suppression. NPJ Precis Oncol. 2022;6:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barone M, Muller M, Chiha S, Ren J, Albat D, Soicke A, et al. Designed nanomolar small-molecule inhibitors of Ena/VASP EVH1 interaction impair invasion and extravasation of breast cancer cells. Proc Natl Acad Sci USA. 2020;117:29684–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant numbers 82373047, 82173137, 82203491 and 82072950), the Natural Science Foundation of Hubei Province of China (grant number 2022CFA008). the Fundamental research Funds for the Central Universities (grant number 2042022kf1212 and 2042022kf1209), the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University (grant number NJC202212) and the Medical Science Advancement Program (Basic Medical Science) of Wuhan University (grant number TFJC2018003).

Author information

Authors and Affiliations

Authors

Contributions

FL conceived and designed the study. FL, WP and LW contributed to the literature search. WP, YT, ZY and QZ performed the experiments. XZ collected tumor samples and provided patient metadata. WP, JX and XZ performed analyses of the clinical metadata. WP, FL, LW and YT contributed to data analysis. FL, WP and YQ contributed to data interpretation. WP, ZZ, NZ and FL contributed to the figures. FL and WP contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Jie Xiong, Xin Zhu, Lei Wei or Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Tian, Y., Zheng, Q. et al. Oncogenic BRAF noncanonically promotes tumor metastasis by mediating VASP phosphorylation and filopodia formation. Oncogene 42, 3194–3205 (2023). https://doi.org/10.1038/s41388-023-02829-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02829-w

Search

Quick links