Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting CK2-mediated phosphorylation of p53R2 sensitizes BRCA-proficient cancer cells to PARP inhibitors

Abstract

Poly[ADP-ribose] polymerase (PARP) inhibitors, which selectively kills homologous recombination (HR) repair-deficient cancer cells, are widely employed to treat cancer patients harboring BRCA1/2 mutations. However, they display limited efficacy in tumors with wild-type (WT) BRCA1/2. Thus, it is crucial to identify new druggable HR repair regulators and improve the therapeutic efficacy of PARP inhibitors via combination therapies in BRCA1/2-WT tumors. Here, we show that the depletion of ribonucleotide reductase (RNR) subunit p53R2 impairs HR repair and sensitizes BRCA1/2-WT cancer cells to PARP inhibition. We further demonstrate that the loss of p53R2 leads to a decrease of HR repair factor CtIP, as a result of dNTPs shortage-induced ubiquitination of CtIP. Moreover, we identify that casein kinase II (CK2) phosphorylates p53R2 at its ser20, which subsequently activates RNR for dNTPs production. Therefore, pharmacologic inhibition of the CK2-mediated phosphorylation of p53R2 compromises its HR repair capacity in BRCA1/2-WT cancer cells, which renders these cells susceptible to PARP inhibition in vitro and in vivo. Therefore, our study reveals a novel strategy to inhibit HR repair activity and convert BRCA1/2-proficient cancers to be susceptible to PARP inhibitors via synthetic lethal combination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Knockout of p53R2 increases Olaparib sensitivity.
Fig. 2: p53R2 deficiency results in reduction of HR repair capacity.
Fig. 3: p53R2 depletion decreases CtIP via dNTPs deficiency.
Fig. 4: p53R2 is phosphorylated by CK2 at ser20.
Fig. 5: Ser20 phosphorylation of p53R2 affects HR repair and PARP inhibitor sensitivity.
Fig. 6: Inhibition of CK2 impairs HR repair activity and sensitizes BRCA1/2 WT cancer cells to PARP inhibitor.
Fig. 7: Combination treatment of CK2 inhibitor and olaparib induces synergistic anti-tumor efficacy in BRCA1/2 WT xenograft model.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials and are available from the corresponding author upon reasonable request.

References

  1. Cohen MS, Chang P. Insights into the biogenesis, function, and regulation of ADP-ribosylation. Nat Chem Biol. 2018;14:236–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Spiegel JO, Van Houten B, Durrant JD. PARP1: Structural insights and pharmacological targets for inhibition. DNA Repair (Amst). 2021;103:103125.

    CAS  PubMed  Google Scholar 

  3. Zhao B, Rothenberg E, Ramsden DA, Lieber MR. The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol. 2020;21:765–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Demin AA, Hirota K, Tsuda M, Adamowicz M, Hailstone R, Brazina J, et al. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol Cell. 2021;81:3018–30 e3015.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zandarashvili L, Langelier MF, Velagapudi UK, Hancock MA, Steffen JD, Billur R, et al. Structural basis for allosteric PARP-1 retention on DNA breaks. Science. 2020;368:eaax6367.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Reynolds P, Cooper S, Lomax M, O’Neill P. Disruption of PARP1 function inhibits base excision repair of a sub-set of DNA lesions. Nucleic Acids Res. 2015;43:4028–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. D’Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 2018;71:172–6.

    PubMed  Google Scholar 

  8. Peng Y, Liao Q, Tan W, Peng C, Hu Z, Chen Y, et al. The deubiquitylating enzyme USP15 regulates homologous recombination repair and cancer cell response to PARP inhibitors. Nat Commun. 2019;10:1224.

    PubMed  PubMed Central  Google Scholar 

  9. Verma P, Zhou Y, Cao Z, Deraska PV, Deb M, Arai E, et al. ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nat Cell Biol. 2021;23:160–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang S, Peng X, Li X, Liu H, Zhao B, Elkabets M, et al. BKM120 sensitizes glioblastoma to the PARP inhibitor rucaparib by suppressing homologous recombination repair. Cell Death Dis. 2021;12:546.

    PubMed  PubMed Central  Google Scholar 

  11. Chopra N, Tovey H, Pearson A, Cutts R, Toms C, Proszek P, et al. Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer. Nat Commun. 2020;11:2662.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355:1152–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26:52–64.

    CAS  PubMed  Google Scholar 

  15. Bouwman P, Aly A, Escandell JM, Pieterse M, Bartkova J, van der Gulden H, et al. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat Struct Mol Biol. 2010;17:688–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee D, Apelt K, Lee SO, Chan HR, Luijsterburg MS, Leung JWC, et al. ZMYM2 restricts 53BP1 at DNA double-strand breaks to favor BRCA1 loading and homologous recombination. Nucleic Acids Res. 2022;50:3922–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Geisler JP, Hatterman-Zogg MA, Rathe JA, Buller RE. Frequency of BRCA1 dysfunction in ovarian cancer. J Natl Cancer Inst. 2002;94:61–7.

    CAS  PubMed  Google Scholar 

  18. Krais JJ, Johnson N. BRCA1 Mutations in Cancer: Coordinating Deficiencies in Homologous Recombination with Tumorigenesis. Cancer Res. 2020;80:4601–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen G, Luo Y, Warncke K, Sun Y, Yu DS, Fu H, et al. Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Nat Commun. 2019;10:3213.

    PubMed  PubMed Central  Google Scholar 

  20. Pontarin G, Ferraro P, Bee L, Reichard P, Bianchi V. Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc Natl Acad Sci USA. 2012;109:13302–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pontarin G, Ferraro P, Hakansson P, Thelander L, Reichard P, Bianchi V. p53R2-dependent ribonucleotide reduction provides deoxyribonucleotides in quiescent human fibroblasts in the absence of induced DNA damage. J Biol Chem. 2007;282:16820–8.

    CAS  PubMed  Google Scholar 

  22. McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC. Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell. 2005;20:783–92.

    CAS  PubMed  Google Scholar 

  23. Chen G, Magis AT, Xu K, Park D, Yu DS, Owonikoko TK, et al. Targeting Mcl-1 enhances DNA replication stress sensitivity to cancer therapy. J Clin Invest. 2018;128:500–16.

    PubMed  Google Scholar 

  24. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sak A, Stuschke M. Use of gammaH2AX and other biomarkers of double-strand breaks during radiotherapy. Semin Radiat Oncol. 2010;20:223–31.

    PubMed  Google Scholar 

  26. Moller P, Azqueta A, Boutet-Robinet E, Koppen G, Bonassi S, Milic M, et al. Minimum Information for Reporting on the Comet Assay (MIRCA): recommendations for describing comet assay procedures and results. Nat Protoc. 2020;15:3817–26.

    PubMed  PubMed Central  Google Scholar 

  27. Hariharasudhan G, Jeong SY, Kim MJ, Jung SM, Seo G, Moon JR, et al. TOPORS-mediated RAD51 SUMOylation facilitates homologous recombination repair. Nucleic Acids Res. 2022;50:1501–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shen J, Zhao Y, Pham NT, Li Y, Zhang Y, Trinidad J, et al. Deciphering the mechanism of processive ssDNA digestion by the Dna2-RPA ensemble. Nat Commun. 2022;13:359.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bartek J Jr., Merchut-Maya JM, Maya-Mendoza A, Fornara O, Rahbar A, Brochner CB, et al. Cancer cell stemness, responses to experimental genotoxic treatments, cytomegalovirus protein expression and DNA replication stress in pediatric medulloblastomas. Cell Cycle. 2020;19:727–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen G, Chen J, Qiao Y, Shi Y, Liu W, Zeng Q, et al. ZNF830 mediates cancer chemoresistance through promoting homologous-recombination repair. Nucleic Acids Res. 2018;46:1266–79.

    CAS  PubMed  Google Scholar 

  31. Lafranchi L, de Boer HR, de Vries EG, Ong SE, Sartori AA, van Vugt MA. APC/C(Cdh1) controls CtIP stability during the cell cycle and in response to DNA damage. EMBO J. 2014;33:2860–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Qu J, Sun W, Zhong J, Lv H, Zhu M, Xu J, et al. Phosphoglycerate mutase 1 regulates dNTP pool and promotes homologous recombination repair in cancer cells. J Cell Biol. 2017;216:409–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao X, Wei Y, Chu YY, Li Y, Hsu JM, Jiang Z, et al. Phosphorylation and stabilization of PD-L1 by CK2 suppresses dendritic cell function. Cancer Res. 2022;82:2185–95.

    CAS  PubMed  Google Scholar 

  34. Loizou JI, El-Khamisy SF, Zlatanou A, Moore DJ, Chan DW, Qin J, et al. The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell. 2004;117:17–28.

    CAS  PubMed  Google Scholar 

  35. Tian L, Chen C, Guo Y, Zhang F, Mi J, Feng Q, et al. mTORC2 regulates ribonucleotide reductase to promote DNA replication and gemcitabine resistance in non-small cell lung cancer. Neoplasia. 2021;23:643–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen SH, Yu X. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies. Sci Adv. 2019;5:eaav4340.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Salvi M, Borgo C, Pinna LA, Ruzzene M. Targeting CK2 in cancer: a valuable strategy or a waste of time? Cell Death Discov. 2021;7:325.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamel D, Gray C, Walia JS, Kumar V. PARP Inhibitor Drugs in the Treatment of Breast, Ovarian, Prostate and Pancreatic Cancers: An Update of Clinical Trials. Curr Drug Targets. 2018;19:21–37.

    CAS  PubMed  Google Scholar 

  39. Lee A, Moon BI, Kim TH. BRCA1/BRCA2 Pathogenic Variant Breast Cancer: Treatment and Prevention Strategies. Ann Lab Med. 2020;40:114–21.

    CAS  PubMed  Google Scholar 

  40. Shah S, Rachmat R, Enyioma S, Ghose A, Revythis A, Boussios S. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. Int J Mol Sci. 2021;22:12628.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wong W, Raufi AG, Safyan RA, Bates SE, Manji GA. BRCA Mutations in Pancreas Cancer: Spectrum, Current Management, Challenges and Future Prospects. Cancer Manag Res. 2020;12:2731–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Foskolou IP, Jorgensen C, Leszczynska KB, Olcina MM, Tarhonskaya H, Haisma B, et al. Ribonucleotide Reductase Requires Subunit Switching in Hypoxia to Maintain DNA Replication. Mol Cell. 2017;66:206–220 e209.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Spies J, Polasek-Sedlackova H, Lukas J, Somyajit K. Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication. Genes (Basel). 2021;12:1960.

    CAS  PubMed  Google Scholar 

  44. Schwarz R, Richter A, Ito ERD, Murua Escobar H, Junghanss C, Hinz B. Validation of an LC-MS/MS Method for the Quantification of the CK2 Inhibitor Silmitasertib (CX-4945) in Human Plasma. Molecules. 2022;27:2394.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Dodson GE, Limbo O, Nieto D, Russell P. Phosphorylation-regulated binding of Ctp1 to Nbs1 is critical for repair of DNA double-strand breaks. Cell Cycle. 2010;9:1516–22.

    CAS  PubMed  Google Scholar 

  46. Olsen BB, Wang SY, Svenstrup TH, Chen BP, Guerra B. Protein kinase CK2 localizes to sites of DNA double-strand break regulating the cellular response to DNA damage. BMC Mol Biol. 2012;13:7.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Strom CE, Mortusewicz O, Finch D, Parsons JL, Lagerqvist A, Johansson F, et al. CK2 phosphorylation of XRCC1 facilitates dissociation from DNA and single-strand break formation during base excision repair. DNA Repair (Amst). 2011;10:961–9.

    PubMed  Google Scholar 

  48. von Morgen P, Burdova K, Flower TG, O’Reilly NJ, Boulton SJ, Smerdon SJ, et al. MRE11 stability is regulated by CK2-dependent interaction with R2TP complex. Oncogene. 2017;36:4943–50.

    Google Scholar 

  49. Becherel OJ, Jakob B, Cherry AL, Gueven N, Fusser M, Kijas AW, et al. CK2 phosphorylation-dependent interaction between aprataxin and MDC1 in the DNA damage response. Nucleic Acids Res. 2010;38:1489–503.

    CAS  PubMed  Google Scholar 

  50. Feng H, Lu J, Song X, Thongkum A, Zhang F, Lou L, et al. CK2 kinase-mediated PHF8 phosphorylation controls TopBP1 stability to regulate DNA replication. Nucleic Acids Res. 2020;48:10940–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Guerra B, Iwabuchi K, Issinger OG. Protein kinase CK2 is required for the recruitment of 53BP1 to sites of DNA double-strand break induced by radiomimetic drugs. Cancer Lett. 2014;345:115–23.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank to Dr. Congcong Chen (Jinan University) and Mr. Yanguan Guo (Jinan University) for their technique supports.

Funding

This work is supported by National Natural Science Foundation of China (82073042 to GC; 82272692 to DK. Li), Guangdong Basic and Applied Basic Research Foundation (2022B1515020105 to GC) and Natural Science Foundation of Zhejiang Province (LY21H160025 to YQ).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: GC; data collection: CW, LT, QH, YW, SL; analysis and interpretation of results: GC, LT, QH, SL, CW, YQ; draft manuscript preparation: GC, QH, LT; supervision: GC, DL and BZ. All authors reviewed the results and approved the final version of the manuscript.

Corresponding authors

Correspondence to Bo Zhu, Dake Li or Guo Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Tian, L., He, Q. et al. Targeting CK2-mediated phosphorylation of p53R2 sensitizes BRCA-proficient cancer cells to PARP inhibitors. Oncogene 42, 2971–2984 (2023). https://doi.org/10.1038/s41388-023-02812-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02812-5

Search

Quick links