Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Methyltransferase like 3 inhibition limits intrahepatic cholangiocarcinoma metabolic reprogramming and potentiates the efficacy of chemotherapy

Abstract

N6-methyladenosine (m6A) RNA methylation and its associated methyltransferase like 3 (METTL3) are involved in the development and maintenance of various tumors. The present study aimed to evaluate the cross-talk of METTL3 with glucose metabolism and reveal a novel mechanism for intrahepatic cholangiocarcinoma (ICC) progression. Real-time quantitative PCR, western blotting, and immunohistochemistry analyses suggested that METTL3 was highly expressed in ICC, which was correlated with poor patient prognosis. Immunoprecipitation sequencing of m6A-RNA showed that METTL3 upregulated m6A modification of NFAT5, which recruited IGF2BP1 for NFAT5 mRNA stabilization. Elevated expression of NFAT5 increased the expression of the gluconeogenesis-related genes GLUT1 and PGK1, resulting in enhanced aerobic glycolysis, proliferation, and tumor metastasis of ICC. Moreover, higher METTL3 expression was observed in tumor tissues of ICC patients with activated ICC glucose metabolism. Importantly, STM2457, a highly potent METTL3 inhibitor, which inhibited METTL3 activity and acted synergistically with gemcitabine, suggests that reprogramming RNA epigenetic modifications may serve as a potential therapeutic strategy. Overall, our findings highlighted the role of METTL3-mediated m6A modification of NFAT5 in activating glycolytic reprogramming in ICC and proposed that the METTL3/NFAT5 axis was a clinical target for the management of ICC chemoresistance by targeting cancer glycolysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: METTL3 is overexpressed in ICC and correlated with poor prognosis.
Fig. 2: METTL3 promotes ICC proliferation in vitro and in vivo.
Fig. 3: Transcriptome sequencing and m6A sequencing identified NFAT5 as a downstream gene of METTL3.
Fig. 4: NFAT5 mRNA stability is regulated via an m6A-IGF2BP1-dependent pathway.
Fig. 5: METTL3 promotes ICC malignant process via upregulating NFAT5 expression.
Fig. 6: METTL3-NFAT5 axis accelerates glycolysis by targeting GLUT1 and PGK1.
Fig. 7: METTL3 blockade enhances chemotherapeutic efficacy against ICC.
Fig. 8: Clinical significance of the METTL3/NFAT5/GLUT1/PGK1 axis in ICC patient samples.

Similar content being viewed by others

Data availability

All relevant data are within the paper and its supplementary files.

References

  1. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15:95–111.

    Article  CAS  PubMed  Google Scholar 

  2. Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, et al. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol. 2020;17:557–88.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Brindley PJ, Bachini M, Ilyas SI, Khan SA, Loukas A, Sirica AE, et al. Cholangiocarcinoma. Nat Rev Dis Primers. 2021;7:65.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dong L, Lu D, Chen R, Lin Y, Zhu H, Zhang Z, et al. Proteogenomic characterization identifies clinically relevant subgroups of intrahepatic cholangiocarcinoma. Cancer Cell. 2022;40:70–87.e15.

    Article  CAS  PubMed  Google Scholar 

  5. Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20:303–22.

    Article  CAS  PubMed  Google Scholar 

  6. Wang X, Li Y, Chen W, Shi H, Eren AM, Morozov A, et al. Transcriptome-wide reprogramming of N(6)-methyladenosine modification by the mouse microbiome. Cell Res. 2019;29:167–70.

    Article  CAS  PubMed  Google Scholar 

  7. Tang Y, Chen K, Song B, Ma J, Wu X, Xu Q, et al. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 2021;49:D134–d143.

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, Dou X, Chen C, Chen C, Liu C, Xu MM, et al. N (6)-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020;367:580–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet. 2014;15:293–306.

    Article  CAS  PubMed  Google Scholar 

  10. Deng X, Su R, Weng H, Huang H, Li Z, Chen J. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res. 2018;28:507–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma JZ, Yang F, Zhou CC, Liu F, Yuan JH, Wang F, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing. Hepatology. 2017;65:529–43.

    Article  CAS  PubMed  Google Scholar 

  12. Shi H, Wei J, He C. Where, When, and How: Context-Dependent Functions of RNA Methylation Writers, Readers, and Erasers. Mol Cell. 2019;74:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, et al. m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell. 2017;31:591–606.e596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu F, Wei J, Cui X, Yu C, Ni W, Bungert J, et al. Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response. Nucleic Acids Res. 2021;49:5779–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qing Y, Dong L, Gao L, Li C, Li Y, Han L, et al. R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis. Mol Cell. 2021;81:922–939.e929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang Y, Su R, Sheng Y, Dong L, Dong Z, Xu H, et al. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell. 2019;35:677–691.e610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still emerging. Cell Metab. 2022;34:355–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nat Rev Cancer. 2021;21:669–80.

    Article  PubMed  Google Scholar 

  20. Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer. 2013;12:152.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022;12:558–80.

    Article  CAS  PubMed  Google Scholar 

  22. Park MK, Zhang L, Min KW, Cho JH, Yeh CC, Moon H, et al. NEAT1 is essential for metabolic changes that promote breast cancer growth and metastasis. Cell Metab. 2021;33:2380–2397.e2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sukonina V, Ma H, Zhang W, Bartesaghi S, Subhash S, Heglind M, et al. FOXK1 and FOXK2 regulate aerobic glycolysis. Nature. 2019;566:279–83.

    Article  CAS  PubMed  Google Scholar 

  24. Cai LY, Chen SJ, Xiao SH, Sun QJ, Ding CH, Zheng BN, et al. Targeting p300/CBP Attenuates Hepatocellular Carcinoma Progression through Epigenetic Regulation of Metabolism. Cancer Res. 2021;81:860–72.

    Article  CAS  PubMed  Google Scholar 

  25. Li Z, Peng Y, Li J, Chen Z, Chen F, Tu J, et al. N(6)-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 2020;11:2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cao D, Qi Z, Pang Y, Li H, Xie H, Wu J, et al. Retinoic Acid-Related Orphan Receptor C Regulates Proliferation, Glycolysis, and Chemoresistance via the PD-L1/ITGB6/STAT3 Signaling Axis in Bladder Cancer. Cancer Res. 2019;79:2604–18.

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty PK, Mustafi SB, Xiong X, Dwivedi SKD, Nesin V, Saha S, et al. MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat Commun. 2017;8:14634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    Article  PubMed  Google Scholar 

  29. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18:31–42.

    Article  CAS  PubMed  Google Scholar 

  30. Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 2018;20:285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshimoto S, Morita H, Matsuda M, Katakura Y, Hirata M, Hashimoto S. NFAT5 promotes oral squamous cell carcinoma progression in a hyperosmotic environment. Lab Investig. 2021;101:38–50.

    Article  CAS  PubMed  Google Scholar 

  34. Kim DH, Kim KS, Ramakrishna S. NFAT5 promotes in vivo development of murine melanoma metastasis. Biochem Biophys Res Commun. 2018;505:748–54.

    Article  CAS  PubMed  Google Scholar 

  35. Küper C, Beck FX, Neuhofer W. NFAT5-mediated expression of S100A4 contributes to proliferation and migration of renal carcinoma cells. Front Physiol. 2014;5:293.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kelley RK, Bridgewater J, Gores GJ, Zhu AX. Systemic therapies for intrahepatic cholangiocarcinoma. J Hepatol. 2020;72:353–63.

    Article  CAS  PubMed  Google Scholar 

  37. Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, et al. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell. 2017;32:71–87.e77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018;38:1–11.

    Article  PubMed  Google Scholar 

  39. Lan Q, Liu PY, Bell JL, Wang JY, Hüttelmaier S, Zhang XD, et al. The Emerging Roles of RNA m(6)A Methylation and Demethylation as Critical Regulators of Tumorigenesis, Drug Sensitivity, and Resistance. Cancer Res. 2021;81:3431–40.

    Article  CAS  PubMed  Google Scholar 

  40. Slobodin B, Han R, Calderone V, Vrielink J, Loayza-Puch F, Elkon R, et al. Transcription Impacts the Efficiency of mRNA Translation via Co-transcriptional N6-adenosine Methylation. Cell. 2017;169:326–337.e312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen M, Wei L, Law CT, Tsang FH, Shen J, Cheng CL, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018;67:2254–70.

    Article  CAS  PubMed  Google Scholar 

  42. He J, Zhou M, Yin J, Wan J, Chu J, Jia J, et al. METTL3 restrains papillary thyroid cancer progression via m(6)A/c-Rel/IL-8-mediated neutrophil infiltration. Mol Ther. 2021;29:1821–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen H, Gao S, Liu W, Wong CC, Wu J, Wu J, et al. RNA N(6)-Methyladenosine Methyltransferase METTL3 Facilitates Colorectal Cancer by Activating the m(6)A-GLUT1-mTORC1 Axis and Is a Therapeutic Target. Gastroenterology. 2021;160:1284–1300.e1216.

    Article  CAS  PubMed  Google Scholar 

  44. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Su R, Dong L, Li Y, Gao M, He PC, Liu W, et al. METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 2022;24:205–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell. 2016;62:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 2022;13:6350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar R, DuMond JF, Khan SH, Thompson EB, He Y, Burg MB, et al. NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain. Proc Natl Acad Sci USA. 2020;117:20292–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fu SW, Zhang Y, Li S, Shi ZY, Zhao J, He QL. LncRNA TTN-AS1 promotes the progression of oral squamous cell carcinoma via miR-411-3p/NFAT5 axis. Cancer Cell Int. 2020;20:415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu QQ, Li CM, Fu LN, Wang HL, Tan J, Wang YQ, et al. Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes. 2020;12:1788900.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jiang Y, He R, Jiang Y, Liu D, Tao L, Yang M, et al. Transcription factor NFAT5 contributes to the glycolytic phenotype rewiring and pancreatic cancer progression via transcription of PGK1. Cell Death Dis. 2019;10:948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang Z, Li X, Yang F, Chen C, Liu P, Ren Y, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021;12:5872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim J, DeBerardinis RJ. Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metab. 2019;30:434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Q, Wei P, Wu J, Zhang M, Li G, Li Y, et al. The FOXC1/FBP1 signaling axis promotes colorectal cancer proliferation by enhancing the Warburg effect. Oncogene. 2019;38:483–96.

    Article  CAS  PubMed  Google Scholar 

  55. Koppenol WH, Bounds PL, Dang CV. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer. 2011;11:325–37.

    Article  CAS  PubMed  Google Scholar 

  56. Hu H, Zhu W, Qin J, Chen M, Gong L, Li L, et al. Acetylation of PGK1 promotes liver cancer cell proliferation and tumorigenesis. Hepatology. 2017;65:515–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Charlesworth Author Services for the professional editing of the paper.

Funding

Shanghai Municipal Science and Technology Major Project (Grant No. 2018SHZDZX05). National Key Research and Development Program of China (2018YFC1312100 and 2020YFE0202200). Clinical Research Plan of SHDC (No. SHDC2020CR5007). Shanghai Municipal Key Clinical Specialty, CAMS Innovation Fund for Medical Sciences (CIFMS) (2019-I2M-5-058).

Author information

Authors and Affiliations

Authors

Contributions

JG, YF, J-FC, and ZT performed the experiments; M-XT, X-FJ, C-YT, RH, and G-QZ analyzed the data; JG, W-FQ, and X-LW wrote the paper; JZ, JF, and W-RL supplied the patient samples; JZ, JF, W-RL, and Y-HS conceived this work. All authors approved the final paper.

Corresponding authors

Correspondence to Weiren Liu or Yinghong Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study protocol was approved by the Research Ethics Committee of Zhongshan Hospital of Fudan University (Shanghai, China), and written informed consent was obtained from each patient.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Fang, Y., Chen, J. et al. Methyltransferase like 3 inhibition limits intrahepatic cholangiocarcinoma metabolic reprogramming and potentiates the efficacy of chemotherapy. Oncogene 42, 2507–2520 (2023). https://doi.org/10.1038/s41388-023-02760-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02760-0

This article is cited by

Search

Quick links