Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brg1 controls stemness and metastasis of pancreatic cancer through regulating hypoxia pathway

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. We previously reported that chromatin remodeler Brg1 is essential for acinar cell-derived PDAC formation in mice. However, the functional role of Brg1 in established PDAC and its metastasis remains unknown. Here, we investigated the importance of Brg1 for established PDAC by using a mouse model with a dual recombinase system. We discovered that Brg1 was a critical player for the cell survival and growth of spontaneously developed PDAC in mice. In addition, Brg1 was essential for metastasis of PDAC cells by inhibiting apoptosis in splenic injection and peritoneal dissemination models. Moreover, cancer stem-like property was compromised in PDAC cells by Brg1 ablation. Mechanistically, the hypoxia pathway was downregulated in Brg1-deleted mouse PDAC and BRG1-low human PDAC. Brg1 was essential for HIF-1α to bind to its target genes to augment the hypoxia pathway, which was important for PDAC cells to maintain their stem-like properties and to metastasize to the liver. Human PDAC cells with high BRG1 expression were more susceptible to BRG1 suppression. In conclusion, Brg1 plays a critical role for cell survival, stem-like property and metastasis of PDAC through the regulation of hypoxia pathway, and thus could be a novel therapeutic target for PDAC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brg1 plays an important role in the growth of spontaneously developed invasive PDAC in mice.
Fig. 2: Brg1 is critical for cell proliferation and survival of PDAC cells in vitro.
Fig. 3: Brg1 plays an essential role for liver metastasis of mouse PDAC cells by inhibiting apoptosis in vivo.
Fig. 4: Brg1 is critically important for cancer stem-like property of PDAC cells.
Fig. 5: Brg1 plays a critical role for metastasis and cancer stem-like property of PDAC cells through directly regulating the expression of HIF target genes.
Fig. 6: Brg1 directly regulates the expression of HIF target genes in PDAC cells.
Fig. 7: Brg1 expression is a predictive determinant of BRG1 knockdown efficacy of suppression of human PDAC cell proliferation and stem-like property.

Similar content being viewed by others

Data availability

All original microarray data were deposited in the Gene Expression Omnibus (GEO) at National Center for Biotechnology Information (NCBI) with series accession no. GSE199442. The complete ChIP-Seq data were deposited in the GEO at NCBI with series accession no. GSE199610.

References

  1. Saha A, Wittmeyer J, Cairns BR. Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol. 2006;7:437–47.

    Article  CAS  PubMed  Google Scholar 

  2. Lorch Y, Maier-Davis B, Kornberg RD. Mechanism of chromatin remodeling. Proc Natl Acad Sci USA. 2010;107:3458–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

    Article  CAS  PubMed  Google Scholar 

  4. Marquez-Vilendrer SB, Thompson K, Lu L, Reisman D. Mechanism of BRG1 silencing in primary cancers. Oncotarget. 2016;7:56153–69.

    Article  PubMed  Google Scholar 

  5. Tsuda M, Fukuda A, Roy N, Hiramatsu Y, Leonhardt L, Kakiuchi N, et al. The BRG1/SOX9 axis is critical for acinar cell-derived pancreatic tumorigenesis. J Clin Investig. 2018;128:3475–89.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu Q, Madany P, Dobson JR, Schnabl JM, Sharma S, Smith TC, et al. The BRG1 chromatin remodeling enzyme links cancer cell metabolism and proliferation. Oncotarget. 2016;7:38270–81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS, et al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 2013;27:2648–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romero OA, Torres-Diz M, Pros E, Savola S, Gomez A, Moran S, et al. MAX inactivation in small cell lung cancer disrupts MYC-SWI/SNF programs and is synthetic lethal with BRG1. Cancer Discov. 2014;4:292–303.

    Article  CAS  PubMed  Google Scholar 

  9. Numata M, Morinaga S, Watanabe T, Tamagawa H, Yamamoto N, Shiozawa M, et al. The clinical significance of SWI/SNF complex in pancreatic cancer. Int J Oncol. 2013;42:403–10.

    Article  PubMed  Google Scholar 

  10. von Figura G, Fukuda A, Roy N, Liku ME, Morris JP IV, Kim GE, et al. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma. Nat Cell Biol. 2014;16:255–67.

    Article  Google Scholar 

  11. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    Article  CAS  PubMed  Google Scholar 

  12. Ito H, Tanaka S, Akiyama Y, Shimada S, Adikrisna R, Matsumura S, et al. Dominant Expression of DCLK1 in Human Pancreatic Cancer Stem Cells Accelerates Tumor Invasion and Metastasis. PLoS ONE. 2016;11:e0146564.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, et al. LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun. 2016;7:13608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi DM, Shi XL, Xing KL, Zhou HX, Lu LL, Wu WZ. miR-296-5p suppresses stem cell potency of hepatocellular carcinoma cells via regulating Brg1/Sall4 axis. Cell Signal. 2020;72:109650.

    Article  CAS  PubMed  Google Scholar 

  15. Yan X, Han D, Chen Z, Han C, Dong W, Han L, et al. RUNX2 interacts with BRG1 to target CD44 for promoting invasion and migration of colorectal cancer cells. Cancer Cell Int. 2020;20:505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang LY, Zhao J, Chen H, Wan L, Inuzuka H, Guo J, et al. SCF(FBW7)-mediated degradation of Brg1 suppresses gastric cancer metastasis. Nat Commun. 2018;9:3569.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang G, Fu Y, Yang X, Luo X, Wang J, Gong J, et al. Brg-1 targeting of novel miR550a-5p/RNF43/Wnt signaling axis regulates colorectal cancer metastasis. Oncogene. 2016;35:651–61.

    Article  PubMed  Google Scholar 

  18. Schönhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M, et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med. 2014;20:1340–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lissanu Deribe Y, Sun Y, Terranova C, Khan F, Martinez-Ledesma J, Gay J, et al. Mutations in the SWI/SNF complex induce a targetable dependence on oxidative phosphorylation in lung cancer. Nat Med. 2018;24:1047–57.

    Article  CAS  PubMed  Google Scholar 

  20. Schnitzler G, Sif S, Kingston RE. Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell. 1998;94:17–27.

    Article  CAS  PubMed  Google Scholar 

  21. Vierbuchen T, Ling E, Cowley CJ, Couch CH, Wang X, Harmin DA, et al. AP-1 Transcription Factors and the BAF Complex Mediate Signal-Dependent Enhancer Selection. Mol Cell. 2017;68:1067–1082.e1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Labuschagne CF, Cheung EC, Blagih J, Domart MC, Vousden KH. Cell Clustering Promotes a Metabolic Switch that Supports Metastatic Colonization. Cell Metab. 2019;30:720–734.e725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, et al. Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci USA. 2012;109:E252–259.

    Article  CAS  PubMed  Google Scholar 

  24. Roy N, Malik S, Villanueva KE, Urano A, Lu X, Von Figura G, et al. Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation. Genes Dev. 2015;29:658–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang Q, Lou Y, Zhang J, Fu Q, Wei T, Sun X, et al. Hypoxia-inducible factor-2α promotes tumor progression and has crosstalk with Wnt/β-catenin signaling in pancreatic cancer. Mol Cancer. 2017;16:119.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cao XP, Cao Y, Li WJ, Zhang HH, Zhu ZM. P4HA1/HIF1α feedback loop drives the glycolytic and malignant phenotypes of pancreatic cancer. Biochem Biophys Res Commun. 2019;516:606–12.

    Article  CAS  PubMed  Google Scholar 

  27. Bourgo RJ, Siddiqui H, Fox S, Solomon D, Sansam CG, Yaniv M, et al. SWI/SNF deficiency results in aberrant chromatin organization, mitotic failure, and diminished proliferative capacity. Mol Biol Cell. 2009;20:3192–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, et al. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature. 2013;497:624–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sobczak M, Pietrzak J, Płoszaj T, Robaszkiewicz A. BRG1 Activates Proliferation and Transcription of Cell Cycle-Dependent Genes in Breast Cancer Cells. Cancers (Basel). 2020;12:349.

    Article  CAS  PubMed  Google Scholar 

  30. Bai J, Mei PJ, Liu H, Li C, Li W, Wu YP, et al. BRG1 expression is increased in human glioma and controls glioma cell proliferation, migration and invasion in vitro. J Cancer Res Clin Oncol. 2012;138:991–8.

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Tian X, Wang F, Ma Y, Kornmann M, Yang Y. BRG1 promotes chemoresistance of pancreatic cancer cells through crosstalking with Akt signalling. Eur J Cancer. 2014;50:2251–62.

    Article  CAS  PubMed  Google Scholar 

  32. Jubierre L, Soriano A, Planells-Ferrer L, París-Coderch L, Tenbaum SP, Romero OA, et al. BRG1/SMARCA4 is essential for neuroblastoma cell viability through modulation of cell death and survival pathways. Oncogene. 2016;35:5179–90.

    Article  CAS  PubMed  Google Scholar 

  33. Lv DJ, Song XL, Huang B, Yu YZ, Shu FP, Wang C, et al. HMGB1 Promotes Prostate Cancer Development and Metastasis by Interacting with Brahma-Related Gene 1 and Activating the Akt Signaling Pathway. Theranostics. 2019;9:5166–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Concepcion CP, Ma S, LaFave LM, Bhutkar A, Liu M, DeAngelo LP, et al. Smarca4 Inactivation Promotes Lineage-Specific Transformation and Early Metastatic Features in the Lung. Cancer Discov. 2022;12:562–85.

    Article  CAS  PubMed  Google Scholar 

  35. Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A, et al. Chromatin remodeling factors and BRM/BRG1 expression as prognostic indicators in non-small cell lung cancer. Clin Cancer Res. 2004;10:4314–24.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Wang F, Du C, Guo H, Ma L, Liu X, et al. BRM/SMARCA2 promotes the proliferation and chemoresistance of pancreatic cancer cells by targeting JAK2/STAT3 signaling. Cancer Lett. 2017;402:213–24.

    Article  CAS  PubMed  Google Scholar 

  37. Wu Q, Madany P, Akech J, Dobson JR, Douthwright S, Browne G, et al. The SWI/SNF ATPases Are Required for Triple Negative Breast Cancer Cell Proliferation. J Cell Physiol. 2015;230:2683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kimura Y, Fukuda A, Ogawa S, Maruno T, Takada Y, Tsuda M, et al. ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology. 2018;155:194–209.e192.

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Friedland SC, Guo B, O’Dell MR, Alexander WB, Whitney-Miller CL, et al. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas. Gut. 2019;68:1245–58.

    Article  CAS  PubMed  Google Scholar 

  40. Wang SC, Nassour I, Xiao S, Zhang S, Luo X, Lee J, et al. SWI/SNF component ARID1A restrains pancreatic neoplasia formation. Gut. 2019;68:1259–70.

    Article  CAS  PubMed  Google Scholar 

  41. Sun X, Wang SC, Wei Y, Luo X, Jia Y, Li L, et al. Arid1a Has Context-Dependent Oncogenic and Tumor Suppressor Functions in Liver Cancer. Cancer Cell. 2017;32:574–589.e576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Takada Y, Fukuda A, Chiba T, Seno H. Brg1 plays an essential role in development and homeostasis of the duodenum through regulation of Notch signaling. Development. 2016;143:3532–9.

    CAS  PubMed  Google Scholar 

  43. Güneş C, Paszkowski-Rogacz M, Rahmig S, Khattak S, Camgöz A, Wermke M, et al. Comparative RNAi Screens in Isogenic Human Stem Cells Reveal SMARCA4 as a Differential Regulator. Stem Cell Rep. 2019;12:1084–98.

    Article  Google Scholar 

  44. Wang B, Kaufmann B, Engleitner T, Lu M, Mogler C, Olsavszky V, et al. Brg1 promotes liver regeneration after partial hepatectomy via regulation of cell cycle. Sci Rep. 2019;9:2320.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sumi-Ichinose C, Ichinose H, Metzger D, Chambon P. SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells. Mol Cell Biol. 1997;17:5976–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Fukuda laboratory for technical assistance and helpful discussions. This work was supported in part by Grants-in-Aid KAKENHI (19H03639, 19K16712, 19K22619, 20H03659). It was also supported by Japan Agency for Medical Research and Development, the Project for Cancer Research and Therapeutic Evolution (18cm0106142h0001, 20cm0106177h0001, 20cm0106375h0001) and AMED-PRIME (20gm6010022h0003), Moonshot Research and Development Program (JPMJMS2022-1), and COI-NEXT (JPMJPF2018). It was also supported by Princess Takamatsu Cancer Research Fund (17-24924), the Mochida Foundation (2017bvAg), the Mitsubishi Foundation (201910037), the Uehara Foundation (201720143), the Naito Foundation (22205-1), the Kobayashi Foundation (203200700019), the Simizu Foundation (203180700103), the Japan Foundation for Applied Enzymology (203190700054), the SGH Foundation (203200700056), the Kanae Foundation (203190700083), the Bristol Myers Squibb (200190700011), the Ichiro Kanehara Foundation (20KI037), and the Takeda Foundation (201749741, 203200700045). A part of this study was conducted through the CORE Program of the Radiation Biology Center, Kyoto University.

Author information

Authors and Affiliations

Authors

Contributions

OA, MT, and AF conceived and designed the study. OA, MT, TY, MN, SO, YH, and TM performed the experiments and analyzed the data. MN, MS, YF, TM, MO, KM, YM, NG, and SK contributed reagents, materials, and analysis tools. TM and EH contributed surgical specimens. DS generated Pdx1-Flp, KrasFSF-G12D, Trp53frt, and Rosa26FSF-CreERT2 mice. OA wrote the paper and YN, AF, and HS revised it. AF organized the study.

Corresponding author

Correspondence to Akihisa Fukuda.

Ethics declarations

Competing interests

This author discloses the following: YF is employed by Sumitomo Dainippon Pharma. The remaining authors disclose no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, O., Tsuda, M., Omatsu, M. et al. Brg1 controls stemness and metastasis of pancreatic cancer through regulating hypoxia pathway. Oncogene 42, 2139–2152 (2023). https://doi.org/10.1038/s41388-023-02716-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02716-4

This article is cited by

Search

Quick links