Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Novel thrombospondin-1 transcript exhibits distinctive expression and activity in thyroid tumorigenesis

Abstract

Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues. We observed that TSP1V functionally inhibited tumorigenesis contrary to TSP1 wild-type, as identified in vivo and in vitro. These activities of TSP1V are caused by inhibiting phospho-Smad and phospho-focal adhesion kinase. Reverse transcription polymerase chain reaction and minigene experiments revealed that some phytochemicals/non-steroidal anti-inflammatory drugs enhanced IR. We further found that RNA-binding motif protein 5 (RBM5) suppressed IR induced by sulindac sulfide treatment. Additionally, sulindac sulfide reduced phospho-RBM5 levels in a time-dependent manner. Furthermore, trans-chalcone demethylated TSP1V, thereby preventing methyl-CpG-binding protein 2 binding to TSP1V gene. In addition, TSP1V levels were significantly lower in patients with differentiated thyroid carcinoma than in those with benign thyroid nodule, indicating its potential application as a diagnostic biomarker in tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thrombospondin 1 (TSP1) was selected as a strong candidate diagnostic biomarker for thyroid cancer.
Fig. 2: TSP1V expression in conditioned medium (CM) and cell lysates (CL) depends on serum levels.
Fig. 3: Overexpressing TSP1V functionally affects thyroid cancer progression.
Fig. 4: Intron-retained TSP1V expression is affected by compound treatment.
Fig. 5: Mechanisms of IR induced by compounds (T-C and SS).
Fig. 6: Differential expression of TSP1W and TSP1V in follicular thyroid cancer.

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this published article.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. Ca-Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Kang MJ, Won YJ, Lee JJ, Jung KW, Kim HJ, Kong HJ, et al. Cancer Statistics in Korea: Incidence, mortality, survival, and prevalence in 2019. Cancer Res Treat. 2022;54:330–44.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li RX, Hao JP, Zhu Z, Qiao XD, Wang L, Zhou ZB. Correlation between US-FNAC with BRAF V600E Mutation Analysis and Central Neck Lymph Node Metastasis in cN0 Papillary Thyroid Cancer. Biomed Res Int. 2021;2021:9937742.

    PubMed  PubMed Central  Google Scholar 

  4. Yoon RG, Baek JH, Lee JH, Choi YJ, Hong MJ, Song DE, et al. Diagnosis of thyroid follicular neoplasm: fine-needle aspiration versus core-needle biopsy. Thyroid. 2014;24:1612–7.

    Article  PubMed  Google Scholar 

  5. Stanek-Widera A, Biskup-Fruzynska M, Zembala-Nozynska E, Poltorak S, Snietura M, Lange D. Suspicious for follicular neoplasm or follicular neoplasm? The dilemma of a pathologist and a surgeon. Endokrynol Pol. 2016;67:17–22.

    Article  PubMed  Google Scholar 

  6. Hong Y, Lee J, Moon H, Ryu CH, Seok J, Jung YS, et al. Quercetin induces anticancer activity by upregulating Pro-NAG-1/GDF15 in differentiated thyroid cancer cells. Cancers (Basel). 2021;13:3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fusco A, Grieco M, Santoro M, Berlingieri M, Pilotti S, Pierotti M, et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature. 1987;328:170–2.

    Article  CAS  PubMed  Google Scholar 

  8. Giordano TJ, Kuick R, Thomas DG, Misek DE, Vinco M, Sanders D, et al. Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET/PTC mutation-specific gene expression profiles discovered by DNA microarray analysis. Oncogene. 2005;24:6646–56.

    Article  CAS  PubMed  Google Scholar 

  9. Raman P, Koenig RJ. Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol. 2014;10:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Herrmann MA, Hay ID, Bartelt DH Jr, Ritland SR, Dahl RJ, Grant CS, et al. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. J Clin Invest. 1991;88:1596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marotta V, Guerra A, Sapio MR, Vitale M. RET/PTC rearrangement in benign and malignant thyroid diseases: a clinical standpoint. Eur J Endocrinol. 2011;165:499–507.

    Article  CAS  PubMed  Google Scholar 

  12. Grosso AR, Martins S, Carmo-Fonseca M. The emerging role of splicing factors in cancer. EMBO Rep. 2008;9:1087–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Garcia-Blanco MA, Baraniak AP, Lasda EL. Alternative splicing in disease and therapy. Nat Biotechnol. 2004;22:535–46.

    Article  CAS  PubMed  Google Scholar 

  14. Lazzereschi D, Nardi F, Turco A, Ottini L, D’Amico C, Mariani-Costantini R, et al. A complex pattern of mutations and abnormal splicing of Smad4 is present in thyroid tumours. Oncogene. 2005;24:5344–54.

    Article  CAS  PubMed  Google Scholar 

  15. Huang T, Sun L, Yuan X, Qiu H. Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget. 2017;8:84546–58.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Patwardhan S, Mahadik P, Shetty O, Sen S. ECM stiffness-tuned exosomes drive breast cancer motility through thrombospondin-1. Biomaterials. 2021;279:121185.

    Article  CAS  PubMed  Google Scholar 

  17. Mo DP, He F, Zheng JY, Chen HH, Tang L, Yan F. tRNA-Derived Fragment tRF-17-79MP9PP attenuates cell invasion and migration via THBS1/TGF-beta 1/Smad3 Axis in breast cancer. Front Oncol. 2021;11:656078.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xiao JW, Zhang Y, Tang Y, Dai HF, OuYang Y, Li CC, et al. hsa-miR-4443 inhibits myocardial fibroblast proliferation by targeting THBS1 to regulate TGF-beta 1/alpha-SMA/collagen signaling in atrial fibrillation. Braz J Med Biol Res. 2021;54:e10692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yin Q, Wang PP, Peng R, Zhou H. MiR-19a enhances cell proliferation, migration, and invasiveness through enhancing lymphangiogenesis by targeting thrombospondin-1 in colorectal cancer. Biochem Cell Biol. 2019;97:731–9.

    Article  CAS  PubMed  Google Scholar 

  20. Duquette M, Sadow PM, Lawler J, Nucera C. Thrombospondin-1 Silencing down-regulates integrin expression levels in human anaplastic thyroid cancer cells with BRAF(V600E): New insights in the host tissue adaptation and homeostasis of tumor microenvironment. Front Endocrinol (Lausanne). 2013;4:189.

    Article  PubMed  Google Scholar 

  21. Soula-Rothhut M, Coissard C, Sartelet H, Boudot C, Bellon G, Martiny L, et al. The tumor suppressor PTEN inhibits EGF-induced TSP-1 and TIMP-1 expression in FTC-133 thyroid carcinoma cells. Exp Cell Res. 2005;304:187–201.

    Article  CAS  PubMed  Google Scholar 

  22. Rath GM, Schneider C, Dedieu S, Rothhut B, Soula-Rothhut M, Ghoneim C, et al. The C-terminal CD47/IAP-binding domain of thrombospondin-1 prevents camptothecin- and doxorubicin-induced apoptosis in human thyroid carcinoma cells. Biochim Biophys Acta. 2006;1763:1125–34.

    Article  CAS  PubMed  Google Scholar 

  23. Nucera C, Porrello A, Antonello ZA, Mekel M, Nehs MA, Giordano TJ, et al. B-RafV600 and thrombospondin-1 promote thyroid cancer progression. Proc Natl Acad Sci. 2010;107:10649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Joseph JV, Magaut CR, Storevik S, Geraldo LH, Mathivet T, Latif MA, et al. TGF-beta promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. 2022;24:541–53.

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Khor TO, Shu L, Su Z-Y, Fuentes F, Lee J-H, et al. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem. 2012;12:1281–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oh J, Pradella D, Shao C, Li H, Choi N, Ha J, et al. Widespread alternative splicing changes in metastatic breast cancer cells. Cells. 2021;10:858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du JX, Luo YH, Zhang SJ, Wang B, Chen C, Zhu GQ, et al. Splicing factor SRSF1 promotes breast cancer progression via oncogenic splice switching of PTPMT1. J Exp Clin Cancer Res. 2021;40:171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murayama R, Kimura-Asami M, Togo-Ohno M, Yamasaki-Kato Y, Naruse TK, Yamamoto T, et al. Phosphorylation of the RSRSP stretch is critical for splicing regulation by RNA-Binding Motif Protein 20 (RBM20) through nuclear localization. Sci Rep. 2018;8:8970.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wong JJL, Gao DD, Nguyen TV, Kwok CT, van Geldermalsen M, Middleton R, et al. Intron retention is regulated by altered MeCP2-mediated splicing factor recruitment. Nat Commun. 2017;8:15134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chatterjee B, Lin MH, Chen CC, Peng KL, Wu MS, Tseng MC, et al. DNA Demethylation by DNMT3A and DNMT3B in vitro and of Methylated Episomal DNA in Transiently Transfected Cells. Bba-Gene Regul Mech. 2018;1861:1048–61.

    CAS  Google Scholar 

  31. Kaczkowski B, Tanaka Y, Kawaji H, Sandelin A, Andersson R, Itoh M, et al. Transcriptome analysis of recurrently deregulated genes across multiple cancers identifies new pan-cancer biomarkers. Cancer Res. 2016;76:216–26.

    Article  CAS  PubMed  Google Scholar 

  32. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21:T301–T313.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stenina OI, Ustinov V, Krukovets I, Marinic T, Topol EJ, Plow EF. Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites. The FASEB Journal. 2005;19:1893–5.

    Article  CAS  PubMed  Google Scholar 

  34. Adolph KW. Detection of exon skipping and retained introns in transcription of the human Thrombospondin 2 Gene. Biochem Biophys Res Commun. 1999;259:527–32.

    Article  CAS  PubMed  Google Scholar 

  35. Hirose Y, Chiba K, Karasugi T, Nakajima M, Kawaguchi Y, Mikami Y, et al. A functional polymorphism in THBS2 that affects alternative splicing and MMP binding is associated with lumbar-disc herniation. Am J Hum Genet. 2008;82:1122–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee JH, Horak CE, Khanna C, Meng Z, Yu LR, Veenstra TD, et al. Alterations in Gemin5 expression contribute to alternative mRNA splicing patterns and tumor cell motility. Cancer Res. 2008;68:639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Silva G, Marins M, Fachin AL, Lee SH, Baek SJ. Anti-cancer activity of trans-chalcone in osteosarcoma: Involvement of Sp1 and p53. Mol Carcinog. 2016;55:1438–48.

    Article  CAS  PubMed  Google Scholar 

  38. Komoto TT, Bernardes TM, Mesquita TB, Bortolotto LFB, Silva G, Bitencourt TA, et al. Chalcones repressed the AURKA and MDR proteins involved in metastasis and multiple drug resistance in breast cancer cell lines. Molecules. 2018;23:2018.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xiao SH, Manley JL. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 1997;11:334–44.

    Article  CAS  PubMed  Google Scholar 

  40. Duncan PI, Stojdl DF, Marius RM, Bell JC. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. Mol Cell Biol. 1997;17:5996–6001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cao W, Jamison SF, Garcia-Blanco MA. Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro. RNA. 1997;3:1456–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mathew R, Hartmuth K, Mohlmann S, Urlaub H, Ficner R, Luhrmann R. Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome. Nat Struct Mol Biol. 2008;15:435–43.

    Article  CAS  PubMed  Google Scholar 

  43. Ngo JC, Giang K, Chakrabarti S, Ma CT, Huynh N, Hagopian JC, et al. A sliding docking interaction is essential for sequential and processive phosphorylation of an SR protein by SRPK1. Mol Cell. 2008;29:563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhong XY, Ding JH, Adams JA, Ghosh G, Fu XD. Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes Dev. 2009;23:482–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang K, Patel NA, Watson JE, Apostolatos H, Kleiman E, Hanson O, et al. Akt2 regulation of Cdc2-like kinases (Clk/Sty), serine/arginine-rich (SR) protein phosphorylation, and insulin-induced alternative splicing of PKCbetaII messenger ribonucleic acid. Endocrinology. 2009;150:2087–97.

    Article  CAS  PubMed  Google Scholar 

  46. Ghigna C, Valacca C, Biamonti G. Alternative splicing and tumor progression. Curr Genomics. 2008;9:556–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Timmer T, Terpstra P, van den Berg A, Veldhuis PM, Ter Elst A, Voutsinas G, et al. A comparison of genomic structures and expression patterns of two closely related flanking genes in a critical lung cancer region at 3p21.3. Eur J Human Genet.: EJHG. 1999;7:478–86.

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi T, Ishida J, Shimizu Y, Kawakami H, Suda G, Muranaka T, et al. Decreased RNA-binding motif 5 expression is associated with tumor progression in gastric cancer. Tumor Biol. 2017;39:1010428317694547.

    Article  Google Scholar 

  49. Kobayashi T, Ishida J, Musashi M, Ota S, Yoshida T, Shimizu Y, et al. p53 transactivation is involved in the antiproliferative activity of the putative tumor suppressor RBM5. Int J Cancer. 2011;128:304–18.

    Article  CAS  PubMed  Google Scholar 

  50. Rintala-Maki ND, Goard CA, Langdon CE, Wall VE, Traulsen KE, Morin CD, et al. Expression of RBM5-related factors in primary breast tissue. J Cell Biochem. 2007;100:1440–58.

    Article  CAS  PubMed  Google Scholar 

  51. Lertpatipanpong P, Lee J, Kim I, Eling T, Oh SY, Seong JK, et al. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci Rep-UK. 2021;11:15027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Korea Mouse Phenotyping Center (KMPC) for their technical support, especially Jongdoo Kim, PhD.

Funding

This work was supported by the Research Institute for Veterinary Science and BK21 PLUS Program for Creative Veterinary Science Research Center, Seoul National University, and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (2020R1A2B2002923) to SJB. This work was also supported by a clinical research grant (NCC2211670-1) provided by the National Cancer Center to JSR, CHR, and SJB.

Author information

Authors and Affiliations

Authors

Contributions

YH, JR, and SJB. conceived of the study and designed the experiments. YH, IK, HM, JL, and PL. performed the experiments and collected data. CHR, YSJ, JS, YK, JR, and SJB. interpreted the results. YH, JR, and SJB. wrote the original and revised versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junsun Ryu or Seung Joon Baek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The study was approved by the Institutional Review Board of the National Cancer Center (NCC-2014-0003), mouse experiments were approved by the Institutional Animal Care and Use Committee of Seoul National University (SNU-210511-2-1), and all experiments were conducted in accordance with the relevant guidelines and regulations.

Consent for publication

All participants provided written informed consent.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Kim, I., Moon, H. et al. Novel thrombospondin-1 transcript exhibits distinctive expression and activity in thyroid tumorigenesis. Oncogene 42, 1832–1842 (2023). https://doi.org/10.1038/s41388-023-02692-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02692-9

Search

Quick links