Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LncRNA SLC26A4-AS1 suppresses the MRN complex-mediated DNA repair signaling and thyroid cancer metastasis by destabilizing DDX5

Abstract

Lymph node metastasis is the major adverse feature for recurrence and death of thyroid cancer patients. To identify lncRNAs involved in thyroid cancer metastasis, we systemically screened differentially expressed lncRNAs in lymph node metastasis, thyroid cancer, and normal tissues via RNAseq. We found that lncRNA SLC26A4-AS1 was continuously, significantly down-regulated in normal tissues, thyroid cancer, and lymph node metastasis specimens. Low SLC26A4-AS1 levels in tissues were significantly associated with poor prognosis of thyroid cancer patients. LncRNA SLC26A4-AS1 markedly inhibited migration, invasion, and metastasis capability of cancer cells in vitro and in vivo. Intriguingly, SLC26A4-AS1 could simultaneously interact with DDX5 and the E3 ligase TRIM25, which promoting DDX5 degradation through the ubiquitin-proteasome pathway. In particular, SLC26A4-AS1 inhibited expression of multiple DNA double-strand breaks (DSBs) repair genes, especially genes coding proteins in the MRE11/RAS50/NBS1 (MRN) complex. Enhanced interaction between DDX5 and transcriptional factor E2F1 due to silencing of SLC26A4-AS1 promoted binding of the DDX5–E2F1 complex at promoters of the MRN genes and, thus, stimulate the MRN/ATM dependent DSB signaling and thyroid cancer metastasis. Our study uncovered new insights into the biology driving thyroid cancer metastasis and highlights potentials of lncRNAs as future therapeutic targets again cancer metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LncRNA SLC26A4-AS1 was continuously down-regulated in normal tissues, thyroid cancer, and lymph node metastasis specimens.
Fig. 2: LncRNA SLC26A4-AS1 suppressed metastasis of thyroid cancer cells in vitro and in vivo.
Fig. 3: LncRNA SLC26A4-AS1 interacted with DDX5 and accelerated its degradation.
Fig. 4: SLC26A4-AS1 promoted interactions between DDX5 and the E3 ligase TRIM25.
Fig. 5: Silencing of lncRNA SLC26A4-AS1 enhanced activities of the DDX5–E2F1 transfactor complex to promote transcription of the MRN genes.
Fig. 6: LncRNA SLC26A4-AS1 suppressed DSB repair signaling.

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Kim SY, Kim BW, Pyo JY, Hong SW, Chang HS, Park CS. Macrometastasis in papillary thyroid cancer patients is associated with higher recurrence in lateral neck nodes. World J Surg. 2018;42:123–9.

    PubMed  Google Scholar 

  3. Mao J, Zhang Q, Zhang H, Zheng K, Wang R, Wang G. Risk factors for lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2020;11:265.

    Google Scholar 

  4. Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Sigurdsson A, Bergthorsson JT, et al. Common variants on 9q22.33 and 14q13.3 predispose to thyroid cancer in European populations. Nat Genet. 2009;41:460–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gudmundsson J, Sulem P, Gudbjartsson DF, Jonasson JG, Masson G, He H, et al. Discovery of common variants associated with low TSH levels and thyroid cancer risk. Nat Genet. 2012;44:319–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Figlioli G, Kohler A, Chen B, Elisei R, Romei C, Cipollini M, et al. Novel genome-wide association study-based candidate loci for differentiated thyroid cancer risk. J Clin Endocrinol Metab. 2014;99:E2084–92.

    CAS  PubMed  Google Scholar 

  7. He H, Li W, Liyanarachchi S, Srinivas M, Wang Y, Akagi K, et al. Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc Natl Acad Sci USA. 2015;112:6128–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Swierniak M, Wojcicka A, Czetwertynska M, Dlugosinska J, Stachlewska E, Gierlikowski W, et al. Association between GWAS-derived rs966423 genetic variant and overall mortality in patients with differentiated thyroid cancer. Clin Cancer Res. 2016;22:1111–9.

    CAS  PubMed  Google Scholar 

  9. Gudmundsson J, Thorleifsson G, Sigurdsson JK, Stefansdottir L, Jonasson JG, Gudjonsson SA, et al. A genome-wide association study yields five novel thyroid cancer risk loci. Nat Commun. 2017;8:14517.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Son HY, Hwangbo Y, Yoo SK, Im SW, Yang SD, Kwak SJ, et al. Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer. Nat Commun. 2017;8:15966.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hwangbo Y, Lee EK, Son HY, Im SW, Kwak SJ, Yoon JW, et al. Genome-wide association study reveals distinct genetic susceptibility of thyroid nodules from thyroid cancer. J Clin Endocrinol Metab. 2018;103:4384–94.

    PubMed  Google Scholar 

  12. Jendrzejewski J, Liyanarachchi S, Eiterman A, Thomas A, He H, Nagy R, et al. Fine mapping of 14q13 reveals novel variants associated with different histological subtypes of papillary thyroid carcinoma. Int J Cancer. 2019;144:503–12.

    CAS  PubMed  Google Scholar 

  13. Liyanarachchi S, Gudmundsson J, Ferkingstad E, He H, Jonasson JG, Tragante V, et al. Assessing thyroid cancer risk using polygenic risk scores. Proc Natl Acad Sci USA. 2020;117:5997–6002.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jendrzejewski J, He H, Radomska HS, Li W, Tomsic J, Liyanarachchi S, et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci USA. 2012;109:8646–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. He H, Li W, Liyanarachchi S, Jendrzejewski J, Srinivas M, Davuluri RV, et al. Genetic predisposition to papillary thyroid carcinoma: involvement of FOXE1, TSHR, and a novel lincRNA gene, PTCSC2. J Clin Endocrinol Metab. 2015;100:E164–72.

    CAS  PubMed  Google Scholar 

  16. Zhu H, Lv Z, An C, Shi M, Pan W, Zhou L, et al. Onco-lncRNA HOTAIR and its functional genetic variants in papillary thyroid carcinoma. Sci Rep. 2016;6:31969.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, He H, Li W, Phay J, Shen R, Yu L, et al. MYH9 binds to lncRNA gene PTCSC2 and regulates FOXE1 in the 9q22 thyroid cancer risk locus. Proc Natl Acad Sci USA. 2017;114:474–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Knoll M, Lodish HF, Sun L. Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol. 2015;11:151–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Muhanhali D, Zhai T, Jiang J, Ai Z, Zhu W, Ling Y. Long non-coding antisense RNA TNRC6C-AS1 is activated in papillary thyroid cancer and promotes cancer progression by suppressing TNRC6C expression. Front Endocrinol (Lausanne). 2018;9:360.

    Google Scholar 

  20. Gugnoni M, Manicardi V, Torricelli F, Sauta E, Bellazzi R, Manzotti G, et al. Linc00941 is a novel TGFbeta target that primes papillary thyroid cancer metastatic behavior by regulating the expression of Cadherin 6. Thyroid. 2020. https://doi.org/10.1089/thy.2020.0001. Online ahead of print.

  21. Pan W, Zhang N, Liu W, Liu J, Zhou L, Liu Y, et al. The long noncoding RNA GAS8-AS1 suppresses hepatocarcinogenesis by epigenetically activating the tumor suppressor GAS8. J Biol Chem. 2018;293:17154–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ren Y, Shang J, Li J, Liu W, Zhang Z, Yuan J, et al. The long noncoding RNA PCAT-1 links the microRNA miR-215 to oncogene CRKL-mediated signaling in hepatocellular carcinoma. J Biol Chem. 2017;292:17939–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–61.

    CAS  PubMed  Google Scholar 

  24. Evans JR, Feng FY, Chinnaiyan AM. The bright side of dark matter: lncRNAs in cancer. J Clin Invest. 2016;126:2775–82.

    PubMed  PubMed Central  Google Scholar 

  25. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.

    CAS  PubMed  Google Scholar 

  26. Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, et al. Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell. 2018;174:564–75.e518.

    CAS  PubMed  Google Scholar 

  27. Gao P, Xia JH, Sipeky C, Dong XM, Zhang Q, Yang Y, et al. Biology and clinical implications of the 19q13 aggressive prostate cancer susceptibility locus. Cell. 2018;174:576–89.e518.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazurek A, Luo W, Krasnitz A, Hicks J, Powers RS, Stillman B. DDX5 regulates DNA replication and is required for cell proliferation in a subset of breast cancer cells. Cancer Disco. 2012;2:812–25.

    CAS  Google Scholar 

  29. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu X, Bieda M, Jin VX, Rabinovich A, Oberley MJ, Green R, et al. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 2007;17:1550–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 2003;22:5612–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee JH, Paull TT. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science. 2004;304:93–6.

    CAS  PubMed  Google Scholar 

  33. Reginato G, Cejka P. The MRE11 complex: a versatile toolkit for the repair of broken DNA. DNA Repair. 2020;91–92:102869.

    PubMed  Google Scholar 

  34. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276:42462–7.

    CAS  PubMed  Google Scholar 

  35. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997;17:411–22.

    CAS  PubMed  Google Scholar 

  36. Xing M, Tokumaru Y, Wu G, Westra WB, Ladenson PW, Sidransky D. Hypermethylation of the pendred syndrome gene SLC26A4 is an early event in thyroid tumorigenesis. Cancer Res. 2003;63:2312–5.

    CAS  PubMed  Google Scholar 

  37. Liang W, Sun F. Identification of pivotal lncRNAs in papillary thyroid cancer using lncRNA-mRNA-miRNA ceRNA network analysis. PeerJ. 2019;7:e7441.

    PubMed  PubMed Central  Google Scholar 

  38. Rao Y, Liu H, Yan X, Wang J. In silico analysis identifies differently expressed lncRNAs as novel biomarkers for the prognosis of thyroid cancer. Comput Math Methods Med. 2020;2020:3651051.

    PubMed  PubMed Central  Google Scholar 

  39. Wang DP, Tang XZ, Liang QK, Zeng XJ, Yang JB, Xu J. Overexpression of long noncoding RNA SLC26A4-AS1 inhibits the epithelial-mesenchymal transition via the MAPK pathway in papillary thyroid carcinoma. J Cell Physiol. 2020;235:2403–13.

    CAS  PubMed  Google Scholar 

  40. Yu Y, Yan R, Chen W, Ding X, Liu J, Chen G, et al. Long non-coding RNA SLC26A4-AS1 exerts antiangiogenic effects in human glioma by upregulating NPTX1 via NFKB1 transcriptional factor. FEBS J. 2020. https://doi.org/10.1111/febs.15325. Online ahead of print.

  41. Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−)mice. Nat Genet. 1998;18:360–4.

    CAS  PubMed  Google Scholar 

  42. Saiz AD, Olvera M, Rezk S, Florentine BA, McCourty A, Brynes RK. Immunohistochemical expression of cyclin D1, E2F-1, and Ki-67 in benign and malignant thyroid lesions. J Pathol. 2002;198:157–62.

    CAS  PubMed  Google Scholar 

  43. Onda M, Nagai H, Yoshida A, Miyamoto S, Asaka SI, Akaishi J, et al. Up-regulation of transcriptional factor E2F1 in papillary and anaplastic thyroid cancers. J Hum Genet. 2004;49:312–8.

    CAS  PubMed  Google Scholar 

  44. Nyamao RM, Wu J, Yu L, Xiao X, Zhang FM. Roles of DDX5 in the tumorigenesis, proliferation, differentiation, metastasis and pathway regulation of human malignancies. Biochim Biophys Acta Rev Cancer. 2019;1871:85–98.

    CAS  PubMed  Google Scholar 

  45. Bian L, Meng Y, Zhang M, Li D. MRE11-RAD50-NBS1 complex alterations and DNA damage response: implications for cancer treatment. Mol Cancer. 2019;18:169.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yuan J, Han B, Hu H, Qian Y, Liu Z, Wei Z, et al. CUL4B activates Wnt/beta-catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J Pathol. 2015;235:784–95.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31671300, 31871306, 81702276); Taishan Scholars Program of Shandong Province (tsqn20161060); Program of Science and Technology for the youth innovation team in universities of Shandong Province (2020KJL001); Natural Science Foundation of Shandong Province (ZR2016HQ48, ZR2019LZL011). The authors would like to thank many individuals who participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changming An or Ming Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Song, Y., Pan, W. et al. LncRNA SLC26A4-AS1 suppresses the MRN complex-mediated DNA repair signaling and thyroid cancer metastasis by destabilizing DDX5. Oncogene 39, 6664–6676 (2020). https://doi.org/10.1038/s41388-020-01460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01460-3

Search

Quick links