Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RON-augmented cholesterol biosynthesis in breast cancer metastatic progression and recurrence

Abstract

Recurrence remains a significant clinical barrier to improving breast cancer patient outcomes. The RON receptor is a predictor of metastatic progression and recurrence in breast cancers of all subtypes. RON directed therapies are in development, but preclinical data directly testing the impact of RON inhibition on metastatic progression/recurrence are lacking, and mechanisms to exert this function remain unclear. Herein, we modeled breast cancer recurrence using implantation of RON-overexpressing murine breast cancer cells. Recurrent growth was examined after tumor resection via in vivo imaging and ex vivo culture of circulating tumor cells from whole blood samples from tumor bearing mice. In vitro functional assessment of was performed using mammosphere formation assays. Transcriptomic pathway enrichment identified glycolysis and cholesterol biosynthesis pathways, transcription factor targets, and signaling pathways enriched in RON-overexpressing breast cancer cells. BMS777607, a RON inhibitor, abrogated CTC colony formation tumor cells and tumor recurrence. RON promoted mammosphere formation through upregulated cholesterol production that utilizes glycolysis-derived substrates. In mouse models with RON overexpression, statin-mediated inhibition of cholesterol biosynthesis impeded metastatic progression and recurrence but does not affect the primary tumor. RON upregulates glycolysis and cholesterol biosynthesis gene expression by two pathways: MAPK-dependent c-Myc expression and β-catenin -dependent SREBP2 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibition or silencing of RON abrogates recurrence in murine breast cancer models.
Fig. 2: Cholesterol biosynthesis (CBS) and glycolytic flux are upregulated in RON-overexpressing breast cancer cells.
Fig. 3: Statin-mediated CBS inhibition abrogates mammosphere formation and metastatic progression/recurrence in RON expressing breast cancer models.
Fig. 4: SREBP2 and c-Myc are required for RON-mediated upregulated of CBS and glycolysis, respectively.
Fig. 5: Non-canonical β-catenin activation is required for SREBP2 upregulation and ERK1/2 activation is required for c-Myc upregulation for respective CBS and glycolysis upregulation by RON in breast cancer cells.
Fig. 6: Working model depicting the role of RON in the promotion of breast cancer recurrence.

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available in the Gene Expression Omnibus repository (GSE162532) and available upon request.

References

  1. American Cancer Society. Breast Cancer Facts & Figures 2017-2018. Atlanta: American Cancer Society, Inc. 2017.

  2. American Cancer Society. Cancer Facts & Figures 2019. Atlanta: American Cancer Society; 2019.

  3. Narod SA, Iqbal J, Miller AB. Why have breast cancer mortality rates declined? J Cancer Policy. 2015;5:8–17.

    Article  Google Scholar 

  4. Cancer Research UK, https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer, Accessed February 2021.

  5. Colzani E, Johansson ALV, Liljegren A, Foukakis T, Clements M, Adolfsson J, et al. Time-dependent risk of developing distant metastasis in breast cancer patients according to treatment, age and tumour characteristics. Br J Cancer. 2014;110:1378–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Esserman LJ, Thompson IM, Reid B. Overdiagnosis and overtreatment in cancer: an opportunity for improvement. JAMA. 2013;310:797–8.

    Article  CAS  PubMed  Google Scholar 

  7. Maggiora P, Marchio S, Stella MC, Giai M, Belfiore A, De Bortoli M, et al. Overexpression of the RON gene in human breast carcinoma. Oncogene. 1998;16:2927–33.

    Article  CAS  PubMed  Google Scholar 

  8. Lee W-Y, Chen HHW, Chow N-H, Su W-C, Lin P-W, Guo H-R. Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clin Cancer Res. 2005;11:2222–8.

    Article  CAS  PubMed  Google Scholar 

  9. Hunt BG, Wicker CA, Bourn JR, Lower EE, Takiar V, Waltz SE. MST1R (RON) expression is a novel prognostic biomarker for metastatic progression in breast cancer patients. Breast Cancer Res Treat. 2020;181:529–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Maaren MC, de Munck L, Strobbe LJA, Sonke GS, Westenend PJ, Smidt ML, et al. Ten-year recurrence rates for breast cancer subtypes in the Netherlands: A large population-based study. Int J Cancer. 2019;144:263–72.

    Article  PubMed  Google Scholar 

  11. Ahern TP, Lash TL, Damkier P, Christiansen PM, Cronin-Fenton DP. Statins and breast cancer prognosis: evidence and opportunities. Lancet Oncol. 2014;15:e461–e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Campbell MJ, Esserman LJ, Zhou Y, Shoemaker M, Lobo M, Borman E, et al. Breast cancer growth prevention by statins. Cancer Res. 2006;66:8707–14.

    Article  CAS  PubMed  Google Scholar 

  13. Beckwitt CH, Clark AM, Ma B, Whaley D, Oltvai ZN, Wells A. Statins attenuate outgrowth of breast cancer metastases. Br J Cancer. 2018;119:1094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Wyhe RD, Rahal OM, Woodward WA. Effect of statins on breast cancer recurrence and mortality: a review. Breast Cancer Targets Ther. 2017;9:559.

    Article  Google Scholar 

  15. Beckwitt CH, Brufsky A, Oltvai ZN, Wells A. Statin drugs to reduce breast cancer recurrence and mortality. Breast Cancer Res. 2018;20:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brindisi M, Fiorillo M, Frattaruolo L, Sotgia F, Lisanti MP, Cappello AR. Cholesterol and mevalonate: two metabolites involved in breast cancer progression and drug resistance through the ERRα pathway. Cells. 2020;9:1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nelson ER, Chang C-Y, McDonnell DP. Cholesterol and breast cancer pathophysiology. Trends Endocrinol Metab. 2014;25:649–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andrade K, Fornetti J, Zhao L, Miller SC, Randall RL, Anderson N, et al. RON kinase: a target for treatment of cancer-induced bone destruction and osteoporosis. Sci Transl Med. 2017;9:eaai9338.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Parida PK, Marquez-Palencia M, Nair V, Kaushik AK, Kim K, Sudderth J, et al. Metabolic diversity within breast cancer brain-tropic cells determines metastatic fitness. Cell Metab. 2022;34:90–105.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Havas KM, Milchevskaya V, Radic K, Alladin A, Kafkia E, Garcia M. et al. Metabolic shifts in residual breast cancer drive tumor recurrence. J Clin Invest. 2017;127:2091–2105.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bourn JR, Ruiz-Torres SJ, Hunt BG, Benight NM, Waltz SE. Tumor cell intrinsic RON signaling suppresses innate immune responses in breast cancer through inhibition of IRAK4 signaling. Cancer Lett. 2021;503:75–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea—a paradigm shift. Cancer Res. 2006;66:1883–90.

    Article  CAS  PubMed  Google Scholar 

  23. Hunt BG, Jones A, Lester C, Davis JC, Benight NM, Waltz SE. RON (MST1R) and HGFL (MST1) co-overexpression supports breast tumorigenesis through autocrine and paracrine cellular crosstalk. Cancers (Basel). 2022;14:2493.

    Article  CAS  PubMed  Google Scholar 

  24. Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine. 2016;95:S20–S25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peace BE, Toney-Earley K, Collins MH, Waltz SE. Ron receptor signaling augments mammary tumor formation and metastasis in a murine model of breast cancer. Cancer Res. 2005;65:1285–93.

    Article  CAS  PubMed  Google Scholar 

  27. Zinser GM, Leonis MA, Toney K, Pathrose P, Thobe M, Kader SA, et al. Mammary-specific Ron receptor overexpression induces highly metastatic mammary tumors associated with β-catenin activation. Cancer Res. 2006;66:11967–74.

    Article  CAS  PubMed  Google Scholar 

  28. Wagh PK, Zinser GM, Gray JK, Shrestha A, Waltz SE. Conditional deletion of β-catenin in mammary epithelial cells of Ron receptor, Mst1r, overexpressing mice alters mammary tumorigenesis. Endocrinology. 2012;153:2735–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ruiz-Torres SJ, Benight NM, Karns RA, Lower EE, Guan JL, Waltz SE. HGFL-mediated RON signaling supports breast cancer stem cell phenotypes via activation of non-canonical beta-catenin signaling. Oncotarget. 2017;8:58918–33.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brown NE, Paluch AM, Nashu MA, Komurov K, Waltz SE. Tumor cell autonomous RON receptor expression promotes prostate cancer growth under conditions of androgen deprivation. Neoplasia. 2018;20:917–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang F, Phiel CJ, Spece L, Gurvich N, Klein PS. Inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium Evidence for autoregulation of GSK-3. J Biol Chem. 2003;278:33067–77.

    Article  CAS  PubMed  Google Scholar 

  32. Ginestier C, Monville F, Wicinski J, Cabaud O, Cervera N, Josselin E, et al. Mevalonate metabolism regulates basal breast cancer stem cells and is a potential therapeutic target. Stem Cells. 2012;30:1327–37.

    Article  CAS  PubMed  Google Scholar 

  33. Sethunath V, Hu H, De Angelis C, Veeraraghavan J, Qin L, Wang N, et al. Targeting the mevalonate pathway to overcome acquired anti-HER2 treatment resistance in breast cancer. Mol Cancer Res. 2019;17:2318–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Borgquist S, Bjarnadottir O, Kimbung S, Ahern T. Statins: a role in breast cancer therapy? J Intern Med. 2018;284:346–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McClaine RJ, Marshall AM, Wagh PK, Waltz SE. Ron receptor tyrosine kinase activation confers resistance to tamoxifen in breast cancer cell lines. Neoplasia. 2010;12:650–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marshall AM, McClaine RJ, Gurusamy D, Gray JK, Lewnard KE, Khan SA, et al. Estrogen receptor alpha deletion enhances the metastatic phenotype of Ron overexpressing mammary tumors in mice. Mol Cancer. 2012;11:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gurusamy D, Gray JK, Pathrose P, Kulkarni RM, Finkleman FD, Waltz SE. Myeloid-specific expression of Ron receptor kinase promotes prostate tumor growth. Cancer Res. 2013;73:1752–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stuart WD, Kulkarni RM, Gray JK, Vasiliauskas J, Leonis MA, Waltz SE. Ron receptor regulates Kupffer cell-dependent cytokine production and hepatocyte survival following endotoxin exposure in mice. Hepatology. 2011;53:1618–28.

    Article  CAS  PubMed  Google Scholar 

  39. Jiang H, Zheng H. Efficacy and adverse reaction to different doses of atorvastatin in the treatment of type II diabetes mellitus. Biosci Rep. 2019;39:BSR20182371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Faustino-Rocha A, Oliveira PA, Pinho-Oliveira J, Teixeira-Guedes C, Soares-Maia R, da Costa RG, et al. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim (NY). 2013;42:217–24.

    Article  PubMed  Google Scholar 

  41. Teslaa T, Teitell MA. Techniques to monitor glycolysis. Methods Enzymol. 2014;542:91–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sullivan C, Brown NE, Vasiliauskas J, Pathrose P, Starnes SL, Waltz SE. Prostate epithelial RON signaling promotes M2 macrophage activation to drive prostate tumor growth and progression. Mol Cancer Res. 2020;18:1244–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie Z, Bailey A, Kuleshov MV, Clarke DJB, Evangelista JE, Jenkins SL, et al. Gene set knowledge discovery with enrichr. Curr Protoc. 2021;1:e90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–W7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 2013;14:128.

    Article  Google Scholar 

  46. Vicente-Munoz S, Hunt BG, Lange TE, Wells SI, Waltz SE. NMR-based metabolomic analysis identifies RON-DEK-beta-catenin dependent metabolic pathways and a gene signature that stratifies breast cancer patient survival. PLoS One. 2022;17:e0274128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Lisa Privette-Vinnedge and Megan Johnstone for their guidance and technical assistance.

Funding

This research was funded by NCI T32 CA117846 (SEW and JCD), F31 CA228373 (BGH and SEW), NCI R01 CA239697 (SEW and SIW), and US Department of Veterans Affairs grant 1IOBX000803 (SEW).

Author information

Authors and Affiliations

Authors

Contributions

The authors have made the following declarations about their contributions: Conceived and designed experiments: BGH, SVM, SIW, and SEW. Performed experiments: BGH, JCD, LHF, CL, and SVM. Analyzed data: BGH, JCD, LHF, SVM, CL, SIW, and SEW. Wrote the paper: BGH and SEW. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Susan E. Waltz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunt, B.G., Davis, J.C., Fox, L.H. et al. RON-augmented cholesterol biosynthesis in breast cancer metastatic progression and recurrence. Oncogene 42, 1716–1727 (2023). https://doi.org/10.1038/s41388-023-02688-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02688-5

This article is cited by

Search

Quick links