Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin and Evolution of RAS Membrane Targeting

Abstract

KRAS, HRAS and NRAS proto-oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS proteins consist of a globular G-domain (aa1-166) and a 22-23 aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionary origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the RAS proto-oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionary conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS protein function. The persistence of four RAS isoforms through >400 million years of evolution argues strongly for differential function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Membrane targeting motifs and gene structure of human RAS proteins.
Fig. 2: Eukaryotic RAS protein C-terminal alignment and HVR targeting motifs.
Fig. 3: Conservation of intron/exon gene structures.
Fig. 4: The switch-I and -II regions of eukaryotic RAS proteins are strictly conserved over 1480 MY.
Fig. 5: Vertebrate RAS protein expansion.

Similar content being viewed by others

Data availability

All data analyzed in this report are publicly available from NCBI (https://www.ncbi.nlm.nih.gov), Ensembl (http://www.ensembl.org/) and SIMRBASE (https://genomes.stowers.org). The data utilized are provided in Suppl. File 1.

References

  1. Cox AD, Der CJ. Ras history: the saga continues. Small Gtpases. 2011;1:2–27.

    Article  Google Scholar 

  2. Fernandez-Medarde A, De Las Rivas J, Santos E. 40 years of RAS-a historic overview. Genes (Basel). 2021;12:681.

    Article  CAS  PubMed  Google Scholar 

  3. Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012;72:2457–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahearn I, Zhou M, Philips MR. Posttranslational modifications of RAS proteins. Cold Spring Harb Perspect Med. 2018;8:a031484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wright LP, Philips MR. Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res. 2006;47:883–91.

    Article  CAS  PubMed  Google Scholar 

  6. Gasper R, Wittinghofer F. The Ras switch in structural and historical perspective. Biol Chem. 2019;401:143–63.

    Article  PubMed  Google Scholar 

  7. Nair A, Kubatzky KF, Saha B. Ras isoforms from lab benches to lives-what are we missing and how far are we? Int J Mol Sci. 2021;22:6508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakamura K, Ichise H, Nakao K, Hatta T, Otani H, Sakagami H, et al. Partial functional overlap of the three ras genes in mouse embryonic development. Oncogene. 2008;27:2961–8.

    Article  CAS  PubMed  Google Scholar 

  9. Mor A, Philips MR. Compartmentalized Ras/MAPK signaling. Annu Rev Immunol. 2006;24:771–800.

    Article  CAS  PubMed  Google Scholar 

  10. Aran V, Prior IA. Compartmentalized Ras signaling differentially contributes to phenotypic outputs. Cell Signal. 2013;25:1748–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Campbell SL, Philips MR. Post-translational modification of RAS proteins. Curr Opin Struct Biol. 2021;71:180–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colicelli J. Human RAS superfamily proteins and related GTPases. Sci STKE. 2004;2004:RE13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. van Dam TJ, Bos JL, Snel B. Evolution of the Ras-like small GTPases and their regulators. Small GTPases. 2011;2:4–16.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118:843–6.

    Article  CAS  PubMed  Google Scholar 

  15. Rojas AM, Fuentes G, Rausell A, Valencia A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012;196:189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170:17–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nuevo-Tapioles C, Philips MR. The role of KRAS splice variants in cancer biology. Front Cell Dev Biol. 2022;10:1033348.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tsai FD, Lopes MS, Zhou M, Court H, Ponce O, Fiordalisi JJ, et al. K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif. Proc Natl Acad Sci USA 2015;112:779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amendola CR, Mahaffey JP, Parker SJ, Ahearn IM, Chen WC, Zhou M, et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jing H, Zhang X, Wisner SA, Chen X, Spiegelman NA, Linder ME, et al. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. Elife. 2017;6:e32436.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Castel P, Dharmaiah S, Sale MJ, Messing S, Rizzuto G, Cuevas-Navarro A, et al. RAS interaction with Sin1 is dispensable for mTORC2 assembly and activity. Proc Natl Acad Sci USA 2021;118:e2103261118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lopez JM, Lozano D, Morona R, Gonzalez A. Organization of the catecholaminergic systems in two basal actinopterygian fishes, polypterus senegalus and erpetoichthys calabaricus (actinopterygii: cladistia). J Comp Neurol. 2019;527:437–61.

    Article  CAS  PubMed  Google Scholar 

  23. Venkatesh B, Lee AP, Ravi V, Maurya AK, Lian MM, Swann JB, et al. Elephant shark genome provides unique insights into gnathostome evolution. Nature. 2014;505:174–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyashita T, Gess RW, Tietjen K, Coates MI. Non-ammocoete larvae of Palaeozoic stem lampreys. Nature. 2021;591:408–12.

    Article  CAS  PubMed  Google Scholar 

  25. Miyashita T, Coates MI, Farrar R, Larson P, Manning PL, Wogelius RA, et al. Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological-molecular conflict in early vertebrate phylogeny. Proc Natl Acad Sci USA 2019;116:2146–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast genome. Nature. 1997;387:708–13.

    Article  CAS  PubMed  Google Scholar 

  27. Garcia-Ranea JA, Valencia A. Distribution and functional diversification of the ras superfamily in Saccharomyces cerevisiae. FEBS Lett. 1998;434:219–25.

    Article  CAS  PubMed  Google Scholar 

  28. Hancock JF, Paterson H, Marshall CJ. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell. 1990;63:133–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bivona TG, Quatela SE, Bodemann BO, Ahearn IO, Soskis MJ, Mor A, et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell. 2006;21:481–93.

    Article  CAS  PubMed  Google Scholar 

  30. Sung PJ, Tsai FD, Vais H, Court H, Yang J, Fehrenbacher N, et al. Phosphorylated K-Ras limits cell survival by blocking Bcl-xL sensitization of inositol trisphosphate receptors. Proc Natl Acad Sci USA 2013;110:20593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cho KJ, Casteel DE, Prakash P, Tan L, van der Hoeven D, Salim AA, et al. AMPK and endothelial nitric oxide synthase signaling regulates K-ras plasma membrane interactions via cyclic GMP-dependent protein kinase 2. Mol Cell Biol. 2016;36:3086–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang MT, Holderfield M, Galeas J, Delrosario R, To MD, Balmain A, et al. K-Ras promotes tumorigenicity through suppression of non-canonical wnt signaling. Cell. 2015;163:1237–51.

    Article  CAS  PubMed  Google Scholar 

  33. Senoo H, Murata D, Wai M, Arai K, Iwata W, Sesaki H, et al. KARATE: PKA-induced KRAS4B-RHOA-mTORC2 supercomplex phosphorylates AKT in insulin signaling and glucose homeostasis. Mol Cell. 2021;81:4622–34.e4628.

    Article  CAS  PubMed  Google Scholar 

  34. Reid TS, Terry KL, Casey PJ, Beese LS. Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol. 2004;343:417–33.

    Article  CAS  PubMed  Google Scholar 

  35. Silvius JR, l’Heureux F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry. 1994;33:3014–22.

    Article  CAS  PubMed  Google Scholar 

  36. Simakov O, Marletaz F, Yue JX, O’Connell B, Jenkins J, Brandt A, et al. Deeply conserved synteny resolves early events in vertebrate evolution. Nat Ecol Evol. 2020;4:820–30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3:e314.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ohno S. Gene duplication and the uniqueness of vertebrate genomes circa 1970-99. Semin Cell Dev Biol. 1999;10:517–22.

    Article  CAS  PubMed  Google Scholar 

  39. Lam SD, Babu MM, Lees J, Orengo CA. Biological impact of mutually exclusive exon switching. PLoS Comput Biol. 2021;17:e1008708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kolkman JA, Stemmer WP. Directed evolution of proteins by exon shuffling. Nat Biotechnol. 2001;19:423–8.

    Article  CAS  PubMed  Google Scholar 

  41. Patthy L. Genome evolution and the evolution of exon-shuffling-a review. Gene. 1999;238:103–14.

    Article  CAS  PubMed  Google Scholar 

  42. Suyama M. Mechanistic insights into mutually exclusive splicing in dynamin 1. Bioinformatics. 2013;29:2084–7.

    Article  CAS  PubMed  Google Scholar 

  43. Letunic I, Copley RR, Bork P. Common exon duplication in animals and its role in alternative splicing. Hum Mol Genet. 2002;11:1561–7.

    Article  CAS  PubMed  Google Scholar 

  44. Kondrashov FA, Koonin EV. Origin of alternative splicing by tandem exon duplication. Hum Mol Genet. 2001;10:2661–9.

    Article  CAS  PubMed  Google Scholar 

  45. Abascal F, Ezkurdia I, Rodriguez-Rivas J, Rodriguez JM, del Pozo A, Vazquez J, et al. Alternatively spliced homologous exons have ancient origins and are highly expressed at the protein level. PLoS Comput Biol. 2015;11:e1004325.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wirth A, Labus J, Abdel Galil D, Schill Y, Schmidt S, Bunke T, et al. Palmitoylation of the small GTPase Cdc42 by DHHC5 modulates spine formation and gene transcription. J Biol Chem. 2022;298:102048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yap K, Xiao Y, Friedman BA, Je HS, Makeyev EV. Polarizing the neuron through sustained co-expression of alternatively spliced isoforms. Cell Rep. 2016;15:1316–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen JB, Broz SD, Levinson AD. Expression of the H-ras proto-oncogene is controlled by alternative splicing. Cell. 1989;58:461–72.

    Article  CAS  PubMed  Google Scholar 

  49. Burd CE, Liu W, Huynh MV, Waqas MA, Gillahan JE, Clark KS, et al. Mutation-specific RAS oncogenicity explains NRAS codon 61 selection in melanoma. Cancer Disco. 2014;4:1418–29.

    Article  CAS  Google Scholar 

  50. Cook JH, Melloni GEM, Gulhan DC, Park PJ, Haigis KM. The origins and genetic interactions of KRAS mutations are allele- and tissue-specific. Nat Commun. 2021;12:1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johnson L, Greenbaum D, Cichowski K, Mercer K, Murphy E, Schmitt E, et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 1997;11:2468–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garcia-Espana A, Chung PJ, Zhao X, Lee A, Pellicer A, Yu J, et al. Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol. 2006;41:355–67.

    Article  CAS  PubMed  Google Scholar 

  53. Chicote JU, DeSalle R, Garcia-Espana A. Phosphotyrosine phosphatase R3 receptors: origin, evolution and structural diversification. PLoS One. 2017;12:e0172887.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.

    Article  CAS  PubMed  Google Scholar 

  56. Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 2021;49:D458–D460.

    Article  CAS  PubMed  Google Scholar 

  57. Garcia-Espana A, Mares R, Sun TT, Desalle R. Intron evolution: testing hypotheses of intron evolution using the phylogenomics of tetraspanins. PLoS One. 2009;4:e4680.

    Article  PubMed  PubMed Central  Google Scholar 

  58. UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489.

    Article  Google Scholar 

  59. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.

    Article  CAS  PubMed  Google Scholar 

  61. Gascuel O. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol. 1997;14:685–95.

    Article  CAS  PubMed  Google Scholar 

  62. Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992;8:275–82.

    CAS  PubMed  Google Scholar 

  63. Felsenstein. PHYLIP - phylogeny inference package (Version 3.2). Cladistics. 1989;5:164–6.

    Google Scholar 

  64. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:W465–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22:2971–2.

    Article  CAS  PubMed  Google Scholar 

  67. Talavera D, Hospital A, Orozco M, de la Cruz X. A procedure for identifying homologous alternative splicing events. BMC Bioinforma. 2007;8:260.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Sebastien Santini (CNRS/AMU IGS UMR7256) and the PACA Bioinfo platform for the availability and management of the phylogeny.fr website.

Funding

Funding was provided to M.R.P. (NIH R35CA253178).

Author information

Authors and Affiliations

Authors

Contributions

AGE mined genomic databases and performed alignment and phylogenetic analysis which was put into the context of RAS membrane targeting by MRP and AGE wrote the manuscript together.

Corresponding author

Correspondence to Mark R. Philips.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-España, A., Philips, M.R. Origin and Evolution of RAS Membrane Targeting. Oncogene 42, 1741–1750 (2023). https://doi.org/10.1038/s41388-023-02672-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02672-z

Search

Quick links