Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

C4orf19 inhibits colorectal cancer cell proliferation by competitively binding to Keap1 with TRIM25 via the USP17/Elk-1/CDK6 axis

Abstract

Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract, and has been attracted a great deal attention and extensive investigation due to its high morbidity and mortality rates. The C4orf19 gene encodes a protein with uncharacterized function. Our preliminary exploration of the TCGA database indicated that C4orf19 is markedly downregulated in CRC tissues in comparison to that observed in normal colonic tissues, suggesting its potential association with CRC behaviors. Further studies showed a significant positive correlation between C4orf19 expression levels and CRC patient prognosis. Ectopic expression of C4orf19 inhibited the growth of CRC cells in vitro and tumorigenic ability in vivo. Mechanistic studies showed that C4orf19 binds to Keap1 at near the Lys615, which prevents the ubiquitination of Keap1 by TRIM25, thus protecting the Keap1 protein from degradation. The accumulated Keap1 results in USP17 degradation and in turn leading to the degradation of Elk-1, further attenuates its regulated CDK6 mRNA transcription and protein expression, as well as its mediated proliferation of CRC cells. Collectively, the present studies characterize function of C4orf19 as a tumor suppressor for CRC cell proliferation by targeting Keap1/USP17/Elk-1/CDK6 axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of C4orf19 in CRC and correlation with patient prognosis.
Fig. 2: Effect of C4orf19 levels on CRC cell growth in vitro and in vivo.
Fig. 3: CDK6 is an effector of C4orf19 to inhibit CRC cell cycle progression.
Fig. 4: Overexpression of C4orf19 represses CDK6 transcription and downregulates Elk-1.
Fig. 5: C4orf19 decreases Elk-1 protein stability by downregulating USP17.
Fig. 6: USP17 is a novel ubiquitinated substrate of Keap1 in CRC cells.
Fig. 7: Keap1 is a direct target of C4orf19 and its protein half-life is affected by C4orf19.

Similar content being viewed by others

Data availability

All data created and analyzed during this current work are involved in this published paper (and its supplementary information files).

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017;66:683–91.

    Article  PubMed  Google Scholar 

  3. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal Carcinoma: A General Overview and Future Perspectives in Colorectal Cancer. Int J Mol Sci. 2017;18:197.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17:79–92.

    Article  CAS  PubMed  Google Scholar 

  6. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018;24:3834–48.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ijaq J, Chandrasekharan M, Poddar R, Bethi N, Sundararajan VS. Annotation and curation of uncharacterized proteins- challenges. Front Genet. 2015;6:119.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Duek P, Gateau A, Bairoch A, Lane L. Exploring the Uncharacterized Human Proteome Using neXtProt. J Proteome Res. 2018;17:4211–26.

    Article  CAS  PubMed  Google Scholar 

  9. Kopacz A, Kloska D, Forman HJ, Jozkowicz A, Grochot-Przeczek A. Beyond repression of Nrf2: An update on Keap1. Free Radic Biol Med. 2020;157:63–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baird L, Yamamoto M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol Cell Biol. 2020;40:e00099–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Q, Zhang ZY, Du H, Li SZ, Tu R, Jia YF, et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer. Cell Death Differ. 2019;26:2300–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu Y, Gaedcke J, Emons G, Beissbarth T, Grade M, Jo P, et al. Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery. Genes Chromosom Cancer. 2018;57:140–9.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng G, Ma Y, Zou Y, Yin A, Li W, Dong D. HCMDB: the human cancer metastasis database. Nucleic Acids Res. 2018;46:D950–d955.

    Article  CAS  PubMed  Google Scholar 

  14. Wang W, Lin X, Yu R, Zhou S, Liu Y, Jia H, et al. Down-regulated C4orf19 confers poor prognosis in colon adenocarcinoma identified by gene co-expression network. J Cancer. 2022;13:1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li LT, Jiang G, Chen Q, Zheng JN. Ki67 is a promising molecular target in the diagnosis of cancer (review). Mol Med Rep. 2015;11:1566–72.

    Article  CAS  PubMed  Google Scholar 

  16. Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol. 2020;20:669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finn RS, Crown JP, Lang I, Boer K, Bondarenko IM, Kulyk SO, et al. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): a randomised phase 2 study. Lancet Oncol. 2015;16:25–35.

    Article  CAS  PubMed  Google Scholar 

  18. Xu H, Yu S, Liu Q, Yuan X, Mani S, Pestell RG, et al. Recent advances of highly selective CDK4/6 inhibitors in breast cancer. J Hematol Oncol. 2017;10:97.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Messeguer X, Escudero R, Farré D, Núñez O, Martínez J, Albà MM. PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics. 2002;18:333–4.

    Article  CAS  PubMed  Google Scholar 

  20. Chen Z, Xie Y, Luo H, Song Y, Que T, Hu R, et al. NAP1L1 promotes proliferation and chemoresistance in glioma by inducing CCND1/CDK4/CDK6 expression through its interaction with HDGF and activation of c-Jun. Aging (Albany NY). 2021;13:26180–200.

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Duan Z, Guo W, Zeng L, Wu Y, Chen Y, et al. Targeting the BRD4/FOXO3a/CDK6 axis sensitizes AKT inhibition in luminal breast cancer. Nat Commun. 2018;9:5200.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cram EJ, Liu BD, Bjeldanes LF, Firestone GL. Indole-3-carbinol inhibits CDK6 expression in human MCF-7 breast cancer cells by disrupting Sp1 transcription factor interactions with a composite element in the CDK6 gene promoter. J Biol Chem. 2001;276:22332–40.

    Article  CAS  PubMed  Google Scholar 

  23. Lv W, Su B, Li Y, Geng C, Chen N. KIAA0101 inhibition suppresses cell proliferation and cell cycle progression by promoting the interaction between p53 and Sp1 in breast cancer. Biochem Biophys Res Commun. 2018;503:600–6.

    Article  CAS  PubMed  Google Scholar 

  24. Kasza A. Signal-dependent Elk-1 target genes involved in transcript processing and cell migration. Biochim Biophys Acta. 2013;1829:1026–33.

    Article  CAS  PubMed  Google Scholar 

  25. Odrowaz Z, Sharrocks AD. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes. PLoS Genet. 2012;8:e1002694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shin SY, Kim CG, Lim Y, Lee YH. The ETS family transcription factor ELK-1 regulates induction of the cell cycle-regulatory gene p21(Waf1/Cip1) and the BAX gene in sodium arsenite-exposed human keratinocyte HaCaT cells. J Biol Chem. 2011;286:26860–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Teixeira FR, Manfiolli AO, Soares CS, Baqui MM, Koide T, Gomes MD. The F-box protein FBXO25 promotes the proteasome-dependent degradation of ELK-1 protein. J Biol Chem. 2013;288:28152–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen X, Wang C, Liao K, Zhou S, Cao L, Chen J, et al. USP17 Suppresses Tumorigenesis and Tumor Growth through Deubiquitinating AEP. Int J Biol Sci. 2019;15:738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qian W, Li Q, Wu X, Li W, Li Q, Zhang J, et al. Deubiquitinase USP29 promotes gastric cancer cell migration by cooperating with phosphatase SCP1 to stabilize Snail protein. Oncogene. 2020;39:6802–15.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang S, Yuan J, Zheng R. Suppression of Ubiquitin-Specific Peptidase 17 (USP17) Inhibits Tumorigenesis and Invasion in Non-Small Cell Lung Cancer Cells. Oncol Res. 2016;24:263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ducker C, Chow LKY, Saxton J, Handwerger J, McGregor A, Strahl T, et al. De-ubiquitination of ELK-1 by USP17 potentiates mitogenic gene expression and cell proliferation. Nucleic Acids Res. 2019;47:4495–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oughtred R, Rust J, Chang C, Breitkreutz BJ, Stark C, Willems A, et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30:187–200.

    Article  CAS  PubMed  Google Scholar 

  34. Lu CH, Yeh DW, Lai CY, Liu YL, Huang LR, Lee AY, et al. USP17 mediates macrophage-promoted inflammation and stemness in lung cancer cells by regulating TRAF2/TRAF3 complex formation. Oncogene. 2018;37:6327–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Tao S, Liao L, Li Y, Li H, Li Z, et al. TRIM25 promotes the cell survival and growth of hepatocellular carcinoma through targeting Keap1-Nrf2 pathway. Nat Commun. 2020;11:348.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wei R, Enaka M, Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci Rep. 2019;9:10366.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Villeneuve NF, Tian W, Wu T, Sun Z, Lau A, Chapman E, et al. USP15 negatively regulates Nrf2 through deubiquitination of Keap1. Mol Cell. 2013;51:68–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sherr CJ, Beach D, Shapiro GI. Targeting CDK4 and CDK6: From Discovery to Therapy. Cancer Discov. 2016;6:353–67.

    Article  CAS  PubMed  Google Scholar 

  39. Tigan AS, Bellutti F, Kollmann K, Tebb G, Sexl V. CDK6-a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene. 2016;35:3083–91.

    Article  CAS  PubMed  Google Scholar 

  40. Braal CL, Jongbloed EM, Wilting SM, Mathijssen RHJ, Koolen SLW, Jager A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs. 2021;81:317–31.

    Article  CAS  PubMed  Google Scholar 

  41. Ma J, Liu X, Chen H, Abbas MK, Yang L, Sun H, et al. c-KIT-ERK1/2 signaling activated ELK1 and upregulated carcinoembryonic antigen expression to promote colorectal cancer progression. Cancer Sci. 2021;112:655–67.

    Article  CAS  PubMed  Google Scholar 

  42. Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B. 2018;8:552–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 2020;19:1997–2007.

    PubMed  PubMed Central  Google Scholar 

  44. Schauer NJ, Magin RS, Liu X, Doherty LM, Buhrlage SJ. Advances in Discovering Deubiquitinating Enzyme (DUB) Inhibitors. J Med Chem. 2020;63:2731–50.

    Article  CAS  PubMed  Google Scholar 

  45. Yang GF, Zhang X, Su YG, Zhao R, Wang YY. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review. Cancer Cell Int. 2021;21:455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McFarlane C, Kelvin AA, de la Vega M, Govender U, Scott CJ, Burrows JF, et al. The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression. Cancer Res. 2010;70:3329–39.

    Article  CAS  PubMed  Google Scholar 

  47. Lin J, McCann AP, Sereesongsaeng N, Burden JM, Alsa’d AA, Burden RE, et al. USP17 is required for peripheral trafficking of lysosomes. EMBO Rep. 2022;23:e51932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baohai X, Shi F, Yongqi F. Inhibition of ubiquitin specific protease 17 restrains prostate cancer proliferation by regulation of epithelial-to-mesenchymal transition (EMT) via ROS production. Biomed Pharmacother. 2019;118:108946.

    Article  PubMed  Google Scholar 

  49. Wang C, Li H, Wu L, Jiao X, Jin Z, Zhu Y, et al. Coiled-Coil Domain-Containing 68 Downregulation Promotes Colorectal Cancer Cell Growth by Inhibiting ITCH-Mediated CDK4 Degradation. Front Oncol. 2021;11:668743.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Xie Q, Chen C, Li H, Xu J, Wu L, Yu Y, et al. miR-3687 Overexpression Promotes Bladder Cancer Cell Growth by Inhibiting the Negative Effect of FOXP1 on Cyclin E2 Transcription. Mol Ther. 2019;27:1028–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang S, Hua X, Kuang M, Zhu J, Mu H, Tian Z, et al. miR-190 promotes malignant transformation and progression of human urothelial cells through CDKN1B/p27 inhibition. Cancer Cell Int. 2021;21:241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu J, Tian Z, Li Y, Hua X, Zhang D, Li J, et al. ATG7 Promotes Bladder Cancer Invasion via Autophagy-Mediated Increased ARHGDIB mRNA Stability. Adv Sci (Weinh). 2019;6:1801927.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the Natural Science Foundation of China (NSFC81601849), Zhejiang Provincial Medicine and Health Technology Project (2019RC217), the Natural Science Foundation of Zhejiang province (LY22H160005).

Author information

Authors and Affiliations

Authors

Contributions

SH, QX, and CH conceived and designed the study. SH, JL, and SW detected the biological functions of cells, performed the RT-qPCR assays and the IHC staining assays, and conducted the statistical analyses. JL and SW performed the animal experiments. SH, ZZ, CW, HL, and XZ collected and analyzed clinical samples. SH, QX, HH and CH drafted the paper. All authors read and approved the final version of the paper.

Corresponding author

Correspondence to Qipeng Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

All experiments related to clinical specimens were approved by the Ethics Committee of Wenzhou Medical University. All animal experiments were conducted in accordance with the regulations of the Experimental Center of Wenzhou Medical University. The regulations of the Experimental Animal Ethics Committee of Wenzhou Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Li, J., Wu, S. et al. C4orf19 inhibits colorectal cancer cell proliferation by competitively binding to Keap1 with TRIM25 via the USP17/Elk-1/CDK6 axis. Oncogene 42, 1333–1346 (2023). https://doi.org/10.1038/s41388-023-02656-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02656-z

Search

Quick links