Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

E3 ligase MAEA-mediated ubiquitination and degradation of PHD3 promotes glioblastoma progression

Abstract

Glioblastoma (GBM) is the most common malignant glioma, with a high recurrence rate and a poor prognosis. However, the molecular mechanism behind the malignant progression of GBM is still unclear. In the present study, through the tandem mass tag (TMT)-based quantitative proteomic analysis of clinical primary and recurrent glioma samples, we identified that aberrant E3 ligase MAEA was expressed in recurrent samples. The results of bioinformatics analysis showed that the high expression of MAEA was related to the recurrence and poor prognosis of glioma and GBM. Functional studies showed that MAEA could promote proliferation, invasion, stemness and temozolomide (TMZ) resistance. Mechanistically, the data indicated that MAEA targeted prolyl hydroxylase domain 3 (PHD3) K159 to promote its K48-linked polyubiquitination and degradation, thus enhancing the stability of HIF-1α, thereby promoting the stemness and TMZ resistance of GBM cells through upregulating CD133. The in vivo experiments further confirmed that knocking down MAEA could inhibit the growth of GBM xenograft tumors. In summary, MAEA enhances the expression of HIF-1α/CD133 through the degradation of PHD3 and promotes the malignant progression of GBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MAEA is highly expressed in glioma and is associated with glioma/GBM recurrence and poor prognosis.
Fig. 2: MAEA promotes the proliferation, invasion, stemness and TMZ resistance of GBM.
Fig. 3: PHD3 interacts with MAEA.
Fig. 4: MAEA targets PHD3 for ubiquitination and degradation at K159.
Fig. 5: PHD3 is involved in MAEA-mediated proliferation, invasion, stemness and TMZ resistance of GBM cells.
Fig. 6: MAEA regulates HIF-1α and CD133 by degrading PHD3.
Fig. 7: MAEA promotes tumor growth and TMZ resistance in vivo and there is a correlation among the expression of MAEA, PHD3, HIF-1α and CD133 in tumor tissue.

Similar content being viewed by others

Data availability

Source data and reagents are available from the corresponding author upon reasonable request.

References

  1. Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310:1842–50.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang AS, Ostrom QT, Kruchko C, Rogers L, Peereboom DM, Barnholtz-Sloan JS. Complete prevalence of malignant primary brain tumors registry data in the United States compared with other common cancers, 2010. Neuro Oncol. 2017;19:726–35.

    PubMed  Google Scholar 

  3. Hombach-Klonisch S, Mehrpour M, Shojaei S, Harlos C, Pitz M, Hamai A, et al. Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther. 2018;184:13–41.

    Article  CAS  PubMed  Google Scholar 

  4. Hervey-Jumper SL, Berger MS. Reoperation for recurrent high-grade glioma: a current perspective of the literature. Neurosurgery. 2014;75:491–9. discussion 8-9

    Article  PubMed  Google Scholar 

  5. Sharma M, Schroeder JL, Elson P, Meola A, Barnett GH, Vogelbaum MA, et al. Outcomes and prognostic stratification of patients with recurrent glioblastoma treated with salvage stereotactic radiosurgery. J Neurosurg. 2018;131:489–99.

    Article  PubMed  Google Scholar 

  6. Qin S, Mao Y, Wang H, Duan Y, Zhao L. The interplay between m6A modification and non-coding RNA in cancer stemness modulation: mechanisms, signaling pathways, and clinical implications. Int J Biol Sci. 2021;17:2718–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jia B, Liu W, Gu J, Wang J, Lv W, Zhang W, et al. MiR-7-5p suppresses stemness and enhances temozolomide sensitivity of drug-resistant glioblastoma cells by targeting Yin Yang 1. Exp Cell Res. 2019;375:73–81.

    Article  CAS  PubMed  Google Scholar 

  8. Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS. Inhibition of Sonic hedgehog and Notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med. 2011;17:103–12.

    Article  CAS  PubMed  Google Scholar 

  9. Nimbalkar VP, Kruthika BS, Sravya P, Rao S, Sugur HS, Verma BK, et al. Differential gene expression in peritumoral brain zone of glioblastoma: role of SERPINA3 in promoting invasion, stemness and radioresistance of glioma cells and association with poor patient prognosis and recurrence. J Neurooncol. 2021;152:55–65.

    Article  CAS  PubMed  Google Scholar 

  10. Nabavi SF, Atanasov AG, Khan H, Barreca D, Trombetta D, Testai L, et al. Targeting ubiquitin-proteasome pathway by natural, in particular polyphenols, anticancer agents: Lessons learned from clinical trials. Cancer Lett. 2018;434:101–13.

    Article  CAS  PubMed  Google Scholar 

  11. Severe N, Dieudonne FX, Marie PJ. E3 ubiquitin ligase-mediated regulation of bone formation and tumorigenesis. Cell Death Dis. 2013;4:e463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev. 2017;36:683–702.

    Article  CAS  PubMed  Google Scholar 

  13. Lu C, Ning G, Si P, Zhang C, Liu W, Ge W, et al. E3 ubiquitin ligase HECW1 promotes the metastasis of non-small cell lung cancer cells through mediating the ubiquitination of Smad4. Biochem Cell Biol. 2021;99:675–81.

    Article  CAS  PubMed  Google Scholar 

  14. Ji J, Ding K, Luo T, Zhang X, Chen A, Zhang D, et al. TRIM22 activates NF-kappaB signaling in glioblastoma by accelerating the degradation of IkappaBalpha. Cell Death Differ. 2021;28:367–81.

    Article  CAS  PubMed  Google Scholar 

  15. Liu CM, Yu CC, Lin T, Liao YW, Hsieh PL, Yu CH, et al. E3 ligase STUB1 attenuates stemness and tumorigenicity of oral carcinoma cells via transglutaminase 2 regulation. J Formos Med Assoc. 2020;119:1532–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Kang L, Zhang H, Huang Y, Fang L, Li M, et al. AKT drives SOX2 overexpression and cancer cell stemness in esophageal cancer by protecting SOX2 from UBR5-mediated degradation. Oncogene. 2019;38:5250–64.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao X, Zhou M, Yang Y, Luo M. The ubiquitin hydrolase OTUB1 promotes glioma cell stemness via suppressing ferroptosis through stabilizing SLC7A11 protein. Bioengineered. 2021;12:12636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Braun B, Pfirrmann T, Menssen R, Hofmann K, Scheel H, Wolf DH. Gid9, a second RING finger protein contributes to the ubiquitin ligase activity of the Gid complex required for catabolite degradation. FEBS Lett. 2011;585:3856–61.

    Article  CAS  PubMed  Google Scholar 

  19. Lampert F, Stafa D, Goga A, Soste MV, Gilberto S, Olieric N, et al. The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation. Elife. 2018;7:e35528.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wei Q, Pinho S, Dong S, Pierce H, Li H, Nakahara F, et al. MAEA is an E3 ubiquitin ligase promoting autophagy and maintenance of haematopoietic stem cells. Nat Commun. 2021;12:2522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rittmann MC, Hussung S, Braun LM, Klar RFU, Biesel EA, Fichtner-Feigl S, et al. Plasma biomarkers for prediction of early tumor recurrence after resection of pancreatic ductal adenocarcinoma. Sci Rep. 2021;11:7499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sledzinska P, Bebyn MG, Furtak J, Kowalewski J, Lewandowska MA. Prognostic and Predictive Biomarkers in Gliomas. Int J Mol Sci. 2021;22:10373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett. 2016;379:245–52.

    Article  CAS  PubMed  Google Scholar 

  24. Nakayama K, Frew IJ, Hagensen M, Skals M, Habelhah H, Bhoumik A, et al. Siah2 regulates stability of prolyl-hydroxylases, controls HIF1alpha abundance, and modulates physiological responses to hypoxia. Cell. 2004;117:941–52.

    Article  CAS  PubMed  Google Scholar 

  25. Sun C, Song H, Zhang H, Hou C, Zhai T, Huang L, et al. CD133 expression in renal cell carcinoma (RCC) is correlated with nuclear hypoxia-inducing factor 1alpha (HIF-1alpha). J Cancer Res Clin Oncol. 2012;138:1619–24.

    Article  CAS  PubMed  Google Scholar 

  26. Lai FB, Liu WT, Jing YY, Yu GF, Han ZP, Yang X, et al. Lipopolysaccharide supports maintaining the stemness of CD133(+) hepatoma cells through activation of the NF-kappaB/HIF-1alpha pathway. Cancer Lett. 2016;378:131–41.

    Article  CAS  PubMed  Google Scholar 

  27. Wu Q, Berglund AE, MacAulay RJ, Etame AB. A novel role of BIRC3 in stemness reprogramming of glioblastoma. Int J Mol Sci. 2021;23:297.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nakod PS, Kim Y, Rao SS. The impact of astrocytes and endothelial cells on glioblastoma stemness marker expression in multicellular spheroids. Cell Mol Bioeng. 2021;14:639–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee Y, Kim KH, Kim DG, Cho HJ, Kim Y, Rheey J, et al. FoxM1 promotes stemness and radio-resistance of glioblastoma by regulating the master stem cell regulator Sox2. PLoS One. 2015;10:e0137703.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang C, Mukherjee S, Tucker-Burden C, Ross JL, Chau MJ, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dopeso H, Jiao HK, Cuesta AM, Henze AT, Jurida L, Kracht M, et al. PHD3 controls lung cancer metastasis and resistance to EGFR inhibitors through TGFalpha. Cancer Res. 2018;78:1805–19.

    Article  CAS  PubMed  Google Scholar 

  32. Henze AT, Garvalov BK, Seidel S, Cuesta AM, Ritter M, Filatova A, et al. Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun. 2014;5:5582.

    Article  CAS  PubMed  Google Scholar 

  33. Shi M, Dai WQ, Jia RR, Zhang QH, Wei J, Wang YG, et al. APC(CDC20)-mediated degradation of PHD3 stabilizes HIF-1a and promotes tumorigenesis in hepatocellular carcinoma. Cancer Lett. 2021;496:144–55.

    Article  CAS  PubMed  Google Scholar 

  34. Sen Banerjee S, Thirunavukkarasu M, Tipu Rishi M, Sanchez JA, Maulik N, Maulik G. HIF-prolyl hydroxylases and cardiovascular diseases. Toxicol Mech Methods. 2012;22:347–58.

    Article  PubMed  Google Scholar 

  35. Chan DA, Sutphin PD, Yen SE, Giaccia AJ. Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha. Mol Cell Biol. 2005;25:6415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xia X, Wang S, Ni B, Xing S, Cao H, Zhang Z, et al. Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1alpha positive feedback loop. Oncogene. 2020;39:6231–44.

    Article  CAS  PubMed  Google Scholar 

  37. Tanaka T, Li TS, Urata Y, Goto S, Ono Y, Kawakatsu M, et al. Increased expression of PHD3 represses the HIF-1 signaling pathway and contributes to poor neovascularization in pancreatic ductal adenocarcinoma. J Gastroenterol. 2015;50:975–83.

    Article  CAS  PubMed  Google Scholar 

  38. Ohnishi S, Maehara O, Nakagawa K, Kameya A, Otaki K, Fujita H, et al. Hypoxia-inducible factors activate CD133 promoter through ETS family transcription factors. PLoS One. 2013;8:e66255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu H, Jin J, Chen Y, Wu G, Zhu H, Wang Q, et al. GBP3 promotes glioblastoma resistance to temozolomide by enhancing DNA damage repair. Oncogene. 2022;41:3876–85.

    Article  CAS  PubMed  Google Scholar 

  40. Wu X, Zhou Z, Xu S, Liao C, Chen X, Li B, et al. Extracellular vesicle packaged LMP1-activated fibroblasts promote tumor progression via autophagy and stroma-tumor metabolism coupling. Cancer Lett. 2020;478:93–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 81974466), the Natural Science Foundation of Changsha, China (kq2202124), the Hunan Provincial Innovation Foundation for Postgraduate (No. CX20200382) and the Fundamental Research Funds for the Central Universities of Central South University (No. 1053320192726, 1053320212989).

Author information

Authors and Affiliations

Authors

Contributions

PJZ and XZP designed the experiments, performed research and analyzed the data. SYT and LFS collected the tissue samples for proteomics analysis and analyzed data. KZ participated in xenograft experiments, processed tissue samples and analyzed data. ZKT generated constructs. JWP and LFY directed the research and analyzed the data. PJZ, DL and LFY wrote the manuscript. All authors approved final manuscript.

Corresponding authors

Correspondence to Jinwu Peng or Lifang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics statement

The experimental protocol was approved by the Ethics Committee of Xiangya Hospital of Central South University. Animals were raised and operated in accordance with the guidelines formulated by the Medical Research Animal Ethics Committee of Central South University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, P., Peng, X., Tang, S. et al. E3 ligase MAEA-mediated ubiquitination and degradation of PHD3 promotes glioblastoma progression. Oncogene 42, 1308–1320 (2023). https://doi.org/10.1038/s41388-023-02644-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02644-3

Search

Quick links