Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing

Abstract

Although N4-acetylcytidine (ac4C) modification affects the stability and translation of mRNA, it is unknown whether it exists in noncoding RNAs, and its biological function is unclear. Here, nucleotide-resolution method for profiling CTC-490G23.2 ac4C sites and gain- and loss-of-function experiments revealed that N-acetyltransferase 10 (NAT10) is responsible for ac4C modification of long noncoding RNAs (lncRNAs). NAT10-mediated ac4C modification leads to the stabilization and overexpression of lncRNA CTC-490G23.2 in primary esophageal squamous cell carcinoma (ESCC) and its further upregulation in metastatic tissues. CTC-490G23.2 significantly promotes cancer invasion and metastasis in vitro and in vivo. Mechanistically, CTC-490G23.2 acts as a scaffold to increase the binding of CD44 pre-mRNA to polypyrimidine tract-binding protein 1 (PTBP1), resulting in a oncogenic splicing switch from the standard isoform CD44s to the variant isoform CD44v(8-10). CD44v(8-10), but not CD44s, binds to and increases the protein stability of vimentin. Expression levels of CTC-490G23.2 and CD44v(8-10) can predict poor prognosis in cancer patients. Furthermore, the antisense oligonucleotide (ASO)/SV40-LAH4-L1 peptide self-assembled nanocomplexes targeting CTC490G23.2 exerts a significantly suppressive effect on cancer metastasis. The outcome of this study will provide new mechanistic insight into the ac4C modification of lncRNAs and useful clues for the development of novel systemic therapies and prognostic biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NAT10-mediated ac4C modification increases CTC-490G23.2 stability in esophageal cancer.
Fig. 2: Upregulation of CTC-490G23.2 in ESCC promotes tumor metastasis.
Fig. 3: PTBP1 is a binding protein and an important effector of CTC-490G23.2.
Fig. 4: CTC-490G23.2 binds to both PTBP1 and CD44 pre-mRNA to increase their interaction.
Fig. 5: PTBP1-induced alternative splicing of CD44 mediates the role of CTC-490G23.2 in promoting cancer metastasis.
Fig. 6: CD44v(8-10) specifically binds to vimentin and increases its stability.
Fig. 7: Targeting CTC-490G23.2 with ASO nanocomplexes suppresses metastasis in esophageal cancer.
Fig. 8: An overview of CTC-490G23.2 function.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions presented in the article are available in the article and/or the Supplementary Materials. Sequencing data have been deposited in Gene Expression Omnibus with the accession GSE212716. Mass spectrometry data have been deposited in proteomeXchange with the accession PXD036513, PXD036524 and PXD036537.

References

  1. Arango D, Sturgill D, Alhusaini N, Dillman AA, Sweet TJ, Hanson G, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175:1872–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arango D, Sturgill D, Yang R, Kanai T, Bauer P, Roy J, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022;82:2797–814.

    Article  CAS  PubMed  Google Scholar 

  3. Sas-Chen A, Thomas JM, Matzov D, Taoka M, Nance KD, Nir R, et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping. Nature. 2020;583:638–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elguindy MM, Mendell JT. NORAD-induced Pumilio phase separation is required for genome stability. Nature. 2021;595:303–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science. 2013;341:1237973.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–8.

    Article  CAS  PubMed  Google Scholar 

  7. Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, Guttman M, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016;537:369–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  9. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet. 2013;381:400–12.

    Article  PubMed  Google Scholar 

  10. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  11. Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 2011;39:D301–8.

    Article  CAS  PubMed  Google Scholar 

  12. Sondergaard JN, Sommerauer C, Atanasoai I, Hinte LC, Geng K, Guiducci G, et al. CCT3-LINC00326 axis regulates hepatocarcinogenic lipid metabolism. Gut. 2022;71:2081–92.

    Article  CAS  PubMed  Google Scholar 

  13. Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell. 2022;82:2252–66.

    Article  CAS  PubMed  Google Scholar 

  14. Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15:829–45.

    Article  CAS  PubMed  Google Scholar 

  15. Georgilis A, Klotz S, Hanley CJ, Herranz N, Weirich B, Morancho B, et al. PTBP1-mediated alternative splicing regulates the inflammatory secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell. 2018;34:85–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao S, Chen C, Chang K, Karnad A, Jagirdar J, Kumar AP, et al. CD44 expression level and isoform contributes to pancreatic cancer cell plasticity, invasiveness, and response to therapy. Clin Cancer Res. 2016;22:5592–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11:64.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011;19:387–400.

    Article  CAS  PubMed  Google Scholar 

  19. Lau WM, Teng E, Chong HS, Lopez KA, Tay AY, Salto-Tellez M, et al. CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 2014;74:2630–41.

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Tan Y, Zhang C, Zhang Y, Zhang L, Ren P, et al. NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2. EMBO Rep. 2016;17:349–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin X, Chai G, Wu Y, Li J, Chen F, Liu J, et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat Commun. 2019;10:2065.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting drugs across biological barriers. Adv Mater. 2017;29:37.

    Article  Google Scholar 

  23. Jain AK, Xi Y, McCarthy R, Allton K, Akdemir KC, Patel LR, et al. LncPRESS1 is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Mol Cell. 2016;64:967–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37:270–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68:3033–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu YP, Zheng CC, Huang YN, He ML, Xu WW, Li B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm (2020). 2021;2:315–40.

    CAS  PubMed  Google Scholar 

  27. Crooke ST, Baker BF, Crooke RM, Liang XH. Antisense technology: an overview and prospectus. Nat Rev Drug Disco. 2021;20:427–53.

    Article  CAS  Google Scholar 

  28. Arun G, Diermeier S, Akerman M, Chang KC, Wilkinson JE, Hearn S, et al. Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev. 2016;30:34–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med. 2015;7:314ra185.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Akinc A, Maier MA, Manoharan M, Fitzgerald K, Jayaraman M, Barros S, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol. 2019;14:1084–7.

    Article  CAS  PubMed  Google Scholar 

  31. Li B, Xu WW, Lam AKY, Wang Y, Hu HF, Guan XY, et al. Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-metastasis therapy. Oncotarget. 2017;8:38755–66.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liao L, He Y, Li SJ, Zhang GG, Yu W, Yang J, et al. Anti-HIV drug elvitegravir suppresses cancer metastasis via increased proteasomal degradation of m6A methyltransferase METTL3. Cancer Res. 2022;82:2444–57.

    Article  CAS  PubMed  Google Scholar 

  33. Xu WW, Zheng CC, Zuo Q, Li JQ, Hong P, Qin YR, et al. Genome-wide identification of key regulatory lncRNAs in esophageal cancer metastasis. Signal Transduct Target Ther. 2021;6:88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng C, Yu X, Liang Y, Zhu Y, He Y, Liao L, et al. Targeting PFKL with penfluridol inhibits glycolysis and suppresses esophageal cancer tumorigenesis in an AMPK/FOXO3a/BIM-dependent manner. Acta Pharm Sin B. 2022;12:1271–87.

    Article  CAS  PubMed  Google Scholar 

  35. Thalalla Gamage S, Sas-Chen A, Schwartz S, Meier JL. Quantitative nucleotide resolution profiling of RNA cytidine acetylation by ac4C-seq. Nat Protoc. 2021;16:2286–307.

    Article  CAS  PubMed  Google Scholar 

  36. Thomas JM, Bryson KM, Meier JL. Nucleotide resolution sequencing of N4-acetylcytidine in RNA. Methods Enzymol. 2019;621:31–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong P, Liu QW, Xie Y, Zhang QH, Liao L, He QY, et al. Echinatin suppresses esophageal cancer tumor growth and invasion through inducing AKT/mTOR-dependent autophagy and apoptosis. Cell Death Dis. 2020;11:524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu WW, Zheng CC, Huang YN, Chen WY, Yang QS, Ren JY, et al. Synephrine hydrochloride suppresses esophageal cancer tumor growth and metastatic potential through inhibition of galectin-3-AKT/ERK signaling. J Agric Food Chem. 2018;66:9248–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Didier Trono and Professor Vladislav Verkhusha for the plasmids obtained from Addgene.

Funding

This work was supported by National Key Research and Development Program of China (2021YFC2501000, 2021YFC2501900), National Natural Science Foundation of China (82073196, 82273141, 31961160727, 81973339), Natural Science Foundation of Guangdong Province (2021A1515011158, 2021A0505030035), and Key Laboratory of Guangdong Higher Education Institutes (2021KSYS009).

Author information

Authors and Affiliations

Authors

Contributions

XMY, SJL, ZTY and JJX: acquisition of data, analysis and interpretation of data, statistical analysis, drafting of the manuscript; CCZ, PBD, ZLJ, XW, LPZ and XYS: acquisition of data, analysis and interpretation of data; ZCL and ZGL: technical and/or material support; WWX: funding acquisition, technical and/or material support and critical revision of the manuscript for important intellectual content; BL: funding acquisition, study concept and design, study supervision. All authors edited and approved the final version of the manuscript.

Corresponding author

Correspondence to Bin Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal experiments were approved by the experimental Animal Ethics Committee of Guangzhou Medical University and performed according to institutional guidelines. Biospecimens were collected from newly diagnosed patients who underwent surgical resection (Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China). All sample collection procedures complied with routine clinical practice.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, XM., Li, SJ., Yao, ZT. et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene 42, 1101–1116 (2023). https://doi.org/10.1038/s41388-023-02628-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02628-3

This article is cited by

Search

Quick links