Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retrograde regulation of mitochondrial fission and epithelial to mesenchymal transition in hepatocellular carcinoma by GCN5L1

Abstract

Metabolic reprogram is crucial to support cancer cell growth and movement as well as determine cell fate. Mitochondrial protein acetylation regulates mitochondrial metabolism, which is relevant to cancer cell migration and invasion. The functional role of mitochondrial protein acetylation on cancer cell migration remains unclear. General control of amino acid synthesis 5 like-1(GCN5L1), as the regulator of mitochondrial protein acetylation, functions on metabolic reprogramming in mouse livers. In this study, we find that GCN5L1 expression is significantly decreased in metastatic HCC tissues. Loss of GCN5L1 promotes reactive oxygen species (ROS) generation through enhanced fatty acid oxidation (FAO), followed by activation of cellular ERK and DRP1 to promote mitochondrial fission and epithelia to mesenchymal transition (EMT) to boost cell migration. Moreover, palmitate and carnitine-stimulated FAO promotes mitochondrial fission and EMT gene expression to activate HCC cell migration. On the other hand, increased cellular acetyl-CoA level, the product of FAO, enhances HCC cell migration. Taken together, our finding uncovers the metastasis suppressor role as well as the underlying mechanism of GCN5L1 in HCC and also provides evidence of FAO retrograde control of HCC metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deletion of GCN5L1 in HCC cells promotes cell migration and EMT.
Fig. 2: GCN5L1 controls DRP1 translocation and mitochondrial fission.
Fig. 3: GCN5L1 deletion controls DRP1-dependent mitochondrial fission to promote cell migration.
Fig. 4: Enhanced mitochondrial fission in GCN5L1 deleted cells is dependent on ROS production and ERK activation.
Fig. 5: Enhanced mitochondrial fission in GCN5L1 deleted cells is dependent on ROS production and ERK activation.
Fig. 6: Enhanced FAO promotes mitochondrial fission and cell migration in HCC.
Fig. 7: High metastatic HCC cells possess low GCN5L1 expression and high levels of DRP1-S616 phosphorylation correlating with EMT potential.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the paper and/or the Supplementary Materials. Source data are provided with this paper. Materials used in this study are available from the corresponding author upon reasonable request.

References

  1. Dyba T, Randi G, Bray F, Martos C, Giusti F, Nicholson N, et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur J Cancer. 2021;157:308–47.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Senthilnathan S, Memon K, Lewandowski RJ, Kulik L, Mulcahy MF, Riaz A, et al. Extrahepatic metastases occur in a minority of hepatocellular carcinoma patients treated with locoregional therapies: Analyzing patterns of progression in 285 patients. Hepatology. 2012;55:1432–42.

    Article  PubMed  Google Scholar 

  3. Jing Y, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    Article  Google Scholar 

  4. Ogunwobi OO, Harricharran T, Huaman J, Galuza A, Odumuwagun O, Tan Y, et al. Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol. 2019;25:2279–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70:5649–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Porporato PE, Payen V, Perez-Escuredo J, Saedeleer CD, Danhier P, Feron O, et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 2014;8:754–66.

    Article  CAS  PubMed  Google Scholar 

  8. Buck MD, O’Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016;166:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao SM, Xu W, Jiang WQ, Yu W, Lin Y, Zhang TF, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327:1000–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang QJ, Zhang YK, Yang C, Xiong H, Lin Y, Yao J, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science. 2010;327:1004–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 2012;52:23–35.

    Article  CAS  PubMed  Google Scholar 

  12. Softic S, Meyer JG, Wang GX, Gupta MK, Kahn CR. Dietary sugars alter hepatic fatty acid oxidation via transcriptional and post-translational modifications of mitochondrial proteins. Cell Metab. 2019;30:735–753.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee JJ, Van D, Elma Z, Rosa NM, Amey B, Demmers J, et al. Inhibition of epithelial cell migration and Src/FAK signaling by SIRT3. Proc Natl Acad Sci USA. 2018;115:7057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thapa D, Wu K, Stoner MW, Xie B, Zhang M, Manning JR, et al. The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial β-oxidation enzyme HADHA. J Biol Chem. 2018;293:17676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang LD, Scott I, Zhu L, Wu KY, Han K, Chen Y, et al. GCN5L1 modulates cross-talk between mitochondria and cell signaling to regulate FoxO1 stability and gluconeogenesis. Nat Commun. 2017;8:523.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang LD, Zhu L, Wu KY, Chen Y, Lee DY, Gucek M, et al. Mitochondrial general control of amino acid synthesis 5 like 1 regulates glutaminolysis, mammalian target of rapamycin complex 1 activity, and murine liver regeneration. Hepatology. 2020;71:2.

    Article  Google Scholar 

  17. Nassir F, Ibdah JA. Sirtuins and nonalcoholic fatty liver disease. World J Gastroenterol. 2016;22:10084–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scott I, Wang LD, Wu KY, Thapa D, Sack MN, et al. GCN5L1/BLOS1 links acetylation, organelle remodeling, and metabolism. Trends Cell Biol. 2018;28:346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zong WX, Rabinowitz J, White E. Mitochondria and cancer. Mol Cell. 2016;61:667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yin F, Cadenas E. Mitochondria: the cellular hub of the dynamic coordinated network. Antioxid Redox Signal. 2015;22:961–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW, et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene. 2013;32:4814–24.

    Article  CAS  PubMed  Google Scholar 

  22. Senft D, Ronai ZA. Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol. 2016;39:43–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell. 2016;61:683–94.

    Article  CAS  PubMed  Google Scholar 

  24. Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21:204–24.

    Article  CAS  PubMed  Google Scholar 

  25. Kraus F, Roy K, Pucadyil TJ, Ryan MT. Function and regulation of the divisome for mitochondrial fission. Nature. 2021;590:57–66.

    Article  CAS  PubMed  Google Scholar 

  26. Archer SL. Mitochondrial dynamics–mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369:2236–51.

    Article  CAS  PubMed  Google Scholar 

  27. Sun XC, Cao HY, Zhan L, Yin C, Wang G, Liang P, et al. Mitochondrial fission promotes cell migration by Ca2+ /CaMKII/ERK/FAK pathway in hepatocellular carcinoma. Liver Int. 2018;38:1263–72.

    Article  CAS  PubMed  Google Scholar 

  28. Yu Y, Peng XD, Qian XJ, Zhang KM, Huang X, Chen YH, et al. Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis. Signal Transduct Target Ther. 2021;6:401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang TT, Cui YL, Wu YJ, Meng JH, Han LM, Zhang JQ, et al. Mitochondrial GCN5L1 regulates glutaminase acetylation and hepatocellular carcinoma. Clin Transl Med. 2022;12:e852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci. 2008;9:505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA. 2008;105:15803–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol. 2011;13:589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schuler MH, Lewandowska A, Caprio GD, Skillern W, Upadhyayula S, Kirchhausen T, et al. Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration. Mol Biol Cell 2017;28:2159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sciacovelli M, Gonçalves E, Johnson TI, Zecchini VR, Da Costa AS, Gaude E, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537:544–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Letouzé E, Martinelli C, Loriot C, Burnichon N, Abermil N, Ottolenghi C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23:739–52.

    Article  PubMed  Google Scholar 

  36. Zhang Z, Li TE, Chen M, Xu D, Zhu Y, Hu BY, et al. MFN1-dependent alteration of mitochondrial dynamics drives hepatocellular carcinoma metastasis by glucose metabolic reprogramming. Br J Cancer. 2020;122:209–20.

    Article  CAS  PubMed  Google Scholar 

  37. Wu MJ, Chen YS, Kim MR, Chang CC, Gampala S, Zhang Y, et al. Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin. Cell Metab. 2019;29:993–1002.

    Article  CAS  PubMed  Google Scholar 

  38. Horbay R, Bilyy R. Mitochondrial dynamics during cell cycling. Apoptosis. 2016;21:1327–35.

    Article  CAS  PubMed  Google Scholar 

  39. Mitra K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J, et al. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci USA. 2019;106:11960–5.

    Article  Google Scholar 

  40. Zhang JX, Wang XL, Vikash V, Ye Q, Wu DD, Liu YL, et al. ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev. 2016;2016:4350965.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer-Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;27:11124.

    Article  Google Scholar 

  42. Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014;2:17.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cai Y, Crowther J, Pastor T, Abbasi Asbagh L, Baietti MF, De Troyer M, et al. Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism. Cancer Cell. 2016;29:751–66.

    Article  CAS  PubMed  Google Scholar 

  44. Jiang L, Xiao L, Sugiura H, Huang X, Ali A, Kuro-o M, et al. Metabolic reprogramming during TGFβ1-induced epithelial-to-mesenchymal transition. Oncogene. 2015;34:3908–16.

    Article  CAS  PubMed  Google Scholar 

  45. Xiong J, Kawagishi H, Yan Y, Liu J, Wells QS, Edmunds LR, et al. A metabolic basis for endothelial-to-mesenchymal transition. Mol Cell. 2018;69:689–698.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021;18:223–38.

    Article  PubMed  Google Scholar 

  47. Sangineto M, Villani R, Cavallone F, Romano A, Loizzi D, Serviddio G. Lipid metabolism in development and progression of hepatocellular carcinoma. Cancers. 2020;12:1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li JB, Huang QC, Long XY, Zhang J, Huang XJ, Aa JY, et al. CD147 reprograms fatty acid metabolism in hepatocellular carcinoma cells through Akt/mTOR/SREBP1c and P38/PPARα pathways. J Hepatol. 2015;63:1378–89.

    Article  CAS  PubMed  Google Scholar 

  49. Lazar I, Clement E, Dauvillier S, Milhas D, Ducoux-Petit M, LeGonidec S, et al. Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Res. 2016;76:4051–7.

    Article  CAS  PubMed  Google Scholar 

  50. Wang YN, Zeng ZL, Lu J, Wang Y, Liu ZX, He MM, et al. CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis. Oncogene. 2018;37:6025–40.

    Article  CAS  PubMed  Google Scholar 

  51. Xiong J. Fatty acid oxidation in cell fate determination. Trends Biochem Sci. 2018;43:854–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sappington DR, Siegel ER, Hiatt G, Desai A, Penney RB, Jamshidi-Parsian A, et al. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines. Biochim Biophys Acta. 2016;1860:836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matter MS, Decaens T, Andersen JB, Thorgeirsson SS. Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J Hepatol. 2014;60:855–65.

    Article  CAS  PubMed  Google Scholar 

  54. Ferrín G, Guerrero M, Amado V, Rodríguez-Perálvarez M, De, la Mata M. Activation of mTOR signaling pathway in hepatocellular carcinoma. Int J Mol Sci. 2020;2:1266.

    Article  Google Scholar 

  55. Li J, Ye YY, Liu ZH, Zhang GY, Dai HY, Li JQ, et al. Macrophage mitochondrial fission improves cancer cell phagocytosis induced by therapeutic antibodies and is impaired by glutamine competition. Nat Cancer. 2022;3:453–70.

    Article  CAS  PubMed  Google Scholar 

  56. Zheng X, Qian Y, Fu B, Jiao D, Jiang Y, Chen P, et al. Mitochondrial fragmentation limits NK cell-based tumor immunosurveillance. Nat Immunol. 2019;20:1656–67.

    Article  CAS  PubMed  Google Scholar 

  57. Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, et al. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol. 2022;19:1235–50.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang H, Cao HJ, Ma N, Bao WD, Wang JJ, Chen TW, et al. Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis. Proc Natl Acad Sci USA. 2020;117:4770–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Yuezhen Deng at Central South University for providing luciferase expressing Huh-7 cell line. This study was supported by grants from the National Natural Science Foundation of China (grant numbers: 92057120 and 81970674, LZ; 81902700, LW), and the Tianjin Research Innovation Project for Postgraduate Students (grant numbers: 2021YJSB276, LH; 2021YJSS151, JZ).

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived by LZ and LW; LH, LW, and LZ designed the study; Experiments were performed by LH, CZ, DW, JZ, and QT; Data were analyzed and interpreted by LH, LW and LZ; MJL supported bioinformatic analysis; MNS provided conceptual advice and revised the manuscript. The manuscript was written by LH, LW, and LZ with input from all authors.

Corresponding authors

Correspondence to Lingdi Wang or Lu Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhang, C., Wang, D. et al. Retrograde regulation of mitochondrial fission and epithelial to mesenchymal transition in hepatocellular carcinoma by GCN5L1. Oncogene 42, 1024–1037 (2023). https://doi.org/10.1038/s41388-023-02621-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02621-w

This article is cited by

Search

Quick links