Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of Galectin-7 as a crucial metastatic enhancer of squamous cell carcinoma associated with immunosuppression

Abstract

Metastasis predicts poor prognosis in cancer patients. It has been recognized that specific tumor microenvironment defines cancer cell metastasis, whereas the underlying mechanisms remain elusive. Here we show that Galectin-7 is a crucial mediator of metastasis associated with immunosuppression. In a syngeneic mouse squamous cell carcinoma (SCC) model of NR-S1M cells, we isolated metastasized NR-S1M cells from lymph nodes in tumor-bearing mice and established metastatic NR-S1M cells in in vitro culture. RNA-seq analysis revealed that interferon gene signature was markedly downregulated in metastatic NR-S1M cells compared with parental cells, and in vivo NR-S1M tumors heterogeneously developed focal immunosuppressive areas featured by deficiency of anti-tumor immune cells. Spatial transcriptome analysis (Visium) for the NR-S1M tumors revealed that various pro-metastatic genes were significantly upregulated in immunosuppressive areas when compared to immunocompetent areas. Notably, Galectin-7 was identified as a novel metastasis-driving factor. Galectin-7 expression was induced during tumorigenesis particularly in the microenvironment of immunosuppression, and extracellularly released at later stage of tumor progression. Deletion of Galectin-7 in NR-S1M cells significantly suppressed lymph node and lung metastasis without affecting primary tumor growth. Therefore, Galectin-7 is a crucial mediator of tumor metastasis of SCC, which is educated in the immune-suppressed tumor areas, and may be a potential target of cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interferon gene signature is downregulated in metastatic NR-S1M cells.
Fig. 2: Malignant NR-S1M tumors develop focal immunosuppressive areas.
Fig. 3: Spatial transcriptome (ST) analysis of NR-S1M tumors.
Fig. 4: Identification of immunosuppressive region with metastatic potential.
Fig. 5: Identification of Galectin-7 as a potential metastasis-driving factor.
Fig. 6: Ablation of Galectin-7 in NR-S1M cells alleviates metastasis.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  2. Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006;6:449–58.

    Article  CAS  Google Scholar 

  3. Arnold M, Ferlay J, van Berge Henegouwen MI, Soerjomataram I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut. 2020;69:1564.

    Article  Google Scholar 

  4. Mody MD, Rocco JW, Yom SS, Haddad RI, Saba NF. Head and neck cancer. Lancet. 2021;398:2289–99.

    Article  Google Scholar 

  5. Wenig BM. Squamous cell carcinoma of the upper aerodigestive tract: dysplasia and select variants. Mod Pathol. 2017;30:S112–S118.

    Article  Google Scholar 

  6. van Hagen P, Hulshof MCCM, van Lanschot JJB, Steyerberg EW, Henegouwen MIVB, Wijnhoven BPL, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366:2074–84.

    Article  Google Scholar 

  7. Cramer JD, Burtness B, Le QT, Ferris RL. The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol. 2019;16:669–83.

    Article  Google Scholar 

  8. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  Google Scholar 

  9. Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N, Werb Z. Tumour heterogeneity and metastasis at single-cell resolution. Nat Cell Biol. 2018;20:1349–60.

    Article  CAS  Google Scholar 

  10. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010;70:5649–69.

    Article  CAS  Google Scholar 

  11. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  Google Scholar 

  12. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.

    Article  CAS  Google Scholar 

  13. Janssen LME, Ramsay EE, Logsdon CD, Overwijk WW. The immune system in cancer metastasis: friend or foe? J Immunother Cancer. 2017;5:79.

    Article  Google Scholar 

  14. Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 2019;25:5449–57.

    Article  CAS  Google Scholar 

  15. Terry S, Buart S, Chouaib S. Hypoxic stress-induced tumor and immune plasticity, suppression, and impact on tumor heterogeneity. Front Immunol. 2017;8:1625.

    Article  Google Scholar 

  16. Johannes L, Jacob R, Leffler H. Galectins at a glance. J Cell Sci. 2018;131:jcs208884.

    Article  Google Scholar 

  17. Yang R-Y, Rabinovich GA, Liu F-T. Galectins: structure, function and therapeutic potential. Expert Rev Mol Med. 2008;10:e17.

    Article  Google Scholar 

  18. Si Y, Yao Y, Jaramillo Ayala G, Li X, Han Q, Zhang W, et al. Human galectin-16 has a pseudo ligand binding site and plays a role in regulating c-Rel-mediated lymphocyte activity. Biochim Biophys Acta. 2021;1865:129755.

    Article  CAS  Google Scholar 

  19. Madsen P, Rasmussen HH, Flint T, Gromov P, Kruse TA, Honoré B, et al. Cloning, expression, and chromosome mapping of human Galectin-7 (∗). J Biol Chem. 1995;270:5823–9.

    Article  CAS  Google Scholar 

  20. Magnaldo T, Bernerd F, Darmon M. Galectin-7, a human 14-kDa S-lectin, specifically expressed in keratinocytes and sensitive to retinoic acid. Dev Biol. 1995;168:259–71.

    Article  CAS  Google Scholar 

  21. Magnaldo T, Fowlis D, Darmon M. Galectin-7, a marker of all types of stratified epithelia. Differentiation. 1998;63:159–68.

    Article  CAS  Google Scholar 

  22. Saussez S, Kiss R. Galectin-7. Cell Mol Life Sci. 2006;63:686–97.

    Article  CAS  Google Scholar 

  23. Sewgobind NV, Albers S, Pieters RJ. Functions and inhibition of Galectin-7, an emerging target in cellular pathophysiology. Biomolecules. 2021;11:1720.

    Article  CAS  Google Scholar 

  24. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389:300–5.

    Article  CAS  Google Scholar 

  25. Advedissian T, Deshayes F, Viguier M. Galectin-7 in epithelial homeostasis and carcinomas. Int J Mol Sci. 2017;18:2760.

    Article  Google Scholar 

  26. Kaur M, Kaur T, Kamboj SS, Singh J. Roles of Galectin-7 in cancer. Asian Pac J Cancer Prev. 2016;17:455–61.

    Article  Google Scholar 

  27. St-Pierre Y, Campion CG, Grosset A-A. A distinctive role for galectin-7 in cancer? Front Biosci (Landmark Ed). 2012;17:438–50.

    Article  CAS  Google Scholar 

  28. Zhu X, Ding M, Yu M-L, Feng M-X, Tan L-J, Zhao F-K. Identification of galectin-7 as a potential biomarker for esophageal squamous cell carcinoma by proteomic analysis. BMC Cancer. 2010;10:290–290.

    Article  Google Scholar 

  29. Zhu H, Wu T-C, Chen W-Q, Zhou L-J, Wu Y, Zeng L, et al. Roles of galectin-7 and S100A9 in cervical squamous carcinoma: clinicopathological and in vitro evidence. Int J Cancer. 2013;132:1051–9. https://doi.org/10.1002/ijc.27764.

    Article  CAS  Google Scholar 

  30. Zhu H, Pei H-P, Zeng S, Chen J, Shen L-F, Zhong M-Z, et al. Profiling protein markers associated with the sensitivity to concurrent chemoradiotherapy in human cervical carcinoma. J Proteome Res. 2009;8:3969–76.

    Article  CAS  Google Scholar 

  31. Tsai CJ, Sulman EP, Eifel PJ, Jhingran A, Allen PK, Deavers MT, et al. Galectin-7 levels predict radiation response in squamous cell carcinoma of the cervix. Gynecologic Oncol. 2013;131:645–9.

    Article  CAS  Google Scholar 

  32. Guo J-P, Li X-G. Galectin-7 promotes the invasiveness of human oral squamous cell carcinoma cells via activation of ERK and JNK signaling. Oncol Lett. 2017;13:1919–24.

    Article  CAS  Google Scholar 

  33. Mesquita JA, Queiroz LMG, Silveira ÉJD, Gordon-Nunez MA, Godoy GP, Nonaka CFW, et al. Association of immunoexpression of the galectins-3 and -7 with histopathological and clinical parameters in oral squamous cell carcinoma in young patients. Eur Arch Oto-Rhino-Laryngol. 2016;273:237–43.

    Article  Google Scholar 

  34. Alves PM, Godoy GP, Gomes DQ, Medeiros AMC, de Souza LB, da Silveira EJD, et al. Significance of galectins-1, -3, -4 and -7 in the progression of squamous cell carcinoma of the tongue. Pathol Res Pract. 2011;207:236–40.

    Article  CAS  Google Scholar 

  35. Saussez S, Cludts S, Capouillez A, Mortuaire G, Smetana K, Kaltner H, et al. Identification of matrix metalloproteinase-9 as an independent prognostic marker in laryngeal and hypopharyngeal cancer with opposite correlations to adhesion/growth-regulatory galectins-1 and -7. Int J Oncol. 2009;34:433–9.

    CAS  Google Scholar 

  36. Saussez S, Cucu D-R, Decaestecker C, Chevalier D, Kaltner H, André S, et al. Galectin 7 (p53-Induced Gene 1): a new prognostic predictor of recurrence and survival in stage IV hypopharyngeal cancer. Ann Surgical Oncol. 2006;13:999–1009.

    Article  Google Scholar 

  37. Chen Y-S, Chang C-W, Tsay Y-G, Huang L-Y, Wu Y-C, Cheng L-H, et al. HSP40 co-chaperone protein Tid1 suppresses metastasis of head and neck cancer by inhibiting Galectin-7-TCF3-MMP9 axis signaling. Theranostics. 2018;8:3841–55.

    Article  CAS  Google Scholar 

  38. Demers M, Rose AAN, Grosset A-A, Biron-Pain K, Gaboury L, Siegel PM, et al. Overexpression of galectin-7, a myoepithelial cell marker, enhances spontaneous metastasis of breast cancer cells. Am J Pathol. 2010;176:3023–31.

    Article  CAS  Google Scholar 

  39. Gozgit JM, Vasbinder MM, Abo RP, Kunii K, Kuplast-Barr KG, Gui B, et al. PARP7 negatively regulates the type I interferon response in cancer cells and its inhibition triggers antitumor immunity. Cancer Cell. 2021;39:1214.e1210.

    Article  CAS  Google Scholar 

  40. Owen KL, Gearing LJ, Zanker DJ, Brockwell NK, Khoo WH, Roden DL, et al. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep. 2020;21:e50162. https://doi.org/10.15252/embr.202050162.

    Article  CAS  Google Scholar 

  41. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005;201:1089–99.

    Article  CAS  Google Scholar 

  42. Richardson AM, Havel LS, Koyen AE, Konen JM, Shupe J, Wiles WGT, et al. Vimentin is required for lung adenocarcinoma metastasis via heterotypic tumor cell-cancer-associated fibroblast interactions during collective invasion. Clin Cancer Res. 2018;24:420–32.

    Article  CAS  Google Scholar 

  43. Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. Elife. 2020;9:e52511.

    Article  CAS  Google Scholar 

  44. Li H-J, Ke F-Y, Lin C-C, Lu M-Y, Kuo Y-H, Wang Y-P, et al. ENO1 promotes lung cancer metastasis via HGFR and WNT signaling–driven epithelial-to-mesenchymal transition. Cancer Res. 2021;81:4094–109.

    Article  CAS  Google Scholar 

  45. Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, et al. NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett. 2018;418:176–84.

    Article  CAS  Google Scholar 

  46. Liu X, Tan X, Liu P, Wu Y, Qian S, Zhang X. Phosphoglycerate mutase 1 (PGAM1) promotes pancreatic ductal adenocarcinoma (PDAC) metastasis by acting as a novel downstream target of the PI3K/Akt/mTOR pathway. Oncol Res. 2018;26:1123–31.

    Article  Google Scholar 

  47. Huang W-C, Jang T-H, Tung S-L, Yen T-C, Chan S-H, Wang L-H. A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing β5-integrin/c-met signaling pathway. J Exp Clin Cancer Res. 2019;38:89–89.

    Article  Google Scholar 

  48. Albini A, Mirisola V, Pfeffer U. Metastasis signatures: genes regulating tumor–microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev. 2008;27:75–83.

    Article  CAS  Google Scholar 

  49. Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med. 2016;94:509–22.

    Article  Google Scholar 

  50. Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109–13.

    Article  CAS  Google Scholar 

  51. Nguyen B, Fong C, Luthra A, Smith SA, DiNatale RG, Nandakumar S, et al. Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell. 2022;185:563–75. e511

    Article  CAS  Google Scholar 

  52. Saussez S, Lorfevre F, Lequeux T, Laurent G, Chantrain G, Vertongen F, et al. The determination of the levels of circulating galectin-1 and -3 in HNSCC patients could be used to monitor tumor progression and/or responses to therapy. Oral Oncol. 2008;44:86–93.

    Article  CAS  Google Scholar 

  53. Labrie M, Vladoiu MC, Grosset A-A, Gaboury L, St-Pierre Y. Expression and functions of galectin-7 in ovarian cancer. Oncotarget. 2014;5:7705–21.

    Article  Google Scholar 

  54. Pham NTH, Létourneau M, Fortier M, Bégin G, Al-Abdul-Wahid MS, Pucci F, et al. Perturbing dimer interactions and allosteric communication modulates the immunosuppressive activity of human galectin-7. J Biol Chem. 2021;297:101308.

    Article  CAS  Google Scholar 

  55. Pape M, Vissers PAJ, Beerepoot L, Van Berge Henegouwen MI, Lagarde S, Mook S, et al. Treatment patterns and overall survival for recurrent esophageal or gastroesophageal junctional cancer: a nationwide European population-based study. J Clin Oncol. 2021;39:186.

    Article  Google Scholar 

  56. Matsumoto G, Yajima N, Saito H, Nakagami H, Omi Y, Lee U, et al. Cold shock domain protein A (CSDA) overexpression inhibits tumor growth and lymph node metastasis in a mouse model of squamous cell carcinoma. Clin Exp Metastasis. 2010;27:539–47.

    Article  CAS  Google Scholar 

  57. Nagasawa S, Kuze Y, Maeda I, Kojima Y, Motoyoshi A, Onishi T, et al. Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Commun Biol. 2021;4:438.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of our laboratories for technical assistance and helpful discussions.

Funding

KKuba is supported by the Kaken [20H03426, 20K21566, 22K19551] from Japanese Ministry of Science and the Naito Foundation. JA is supported by the Kaken [20K16153, 22K06907], SM is supported by the Kaken [20K09048], YI is supported by the Kaken [17H06179], and TY is supported by the Kaken [20K07285] from Japanese Ministry of Science. This research was also supported by AMED under Grant Number JP 21lm0203079.

Author information

Authors and Affiliations

Authors

Contributions

JA, YN, SM and KKuba conceived the study. JA, YN, SM, MH, KKemuriyama, TY, TE, YM, YI and KKuba conducted experiments and/or analyzed data. YK and YS conducted deep sequencing and analyzed the data. JA and KKuba wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Keiji Kuba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Nagaki, Y., Motoyama, S. et al. Identification of Galectin-7 as a crucial metastatic enhancer of squamous cell carcinoma associated with immunosuppression. Oncogene 41, 5319–5330 (2022). https://doi.org/10.1038/s41388-022-02525-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02525-1

Search

Quick links