Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct roles of treatment schemes and BRCA2 on the restoration of homologous recombination DNA repair and PARP inhibitor resistance in ovarian cancer

Abstract

Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a major advance in ovarian cancer, now as a treatment and as a maintenance therapy in the upfront and recurrent settings. However, patients often develop resistance to PARPis, underlining the importance of dissecting resistance mechanisms. Here, we report different dosing/timing schemes of PARPi treatment in BRCA2-mutant PEO1 cells, resulting in the simultaneous development of distinct resistance mechanisms. PARPi-resistant variants PEO1/OlaJR, established by higher initial doses and short-term PARPi treatment, develops PARPi resistance by rapidly restoring functional BRCA2 and promoting drug efflux activity. In contrast, PEO1/OlaR, developed by lower initial doses with long-term PARPi exposure, shows no regained BRCA2 function but a mesenchymal-like phenotype with greater invasion ability, and exhibits activated ATR/CHK1 and suppressed EZH2/MUS81 signaling cascades to regain HR repair and fork stabilization, respectively. Our study suggests that PARPi resistance mechanisms can be governed by treatment strategies and have a molecular basis on BRCA2 functionality. Further, we define different mechanisms that may serve as useful biomarkers to assess subsequent treatment strategies in PARPi-resistant ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different treatment schemes cause distinct phenotypes of PARPi-resistant BRCA2-mutant PEO1 cell lines.
Fig. 2: PEO1/OlaJR restores its BRCA2 functionality by a heterozygous BRCA2 reversion mutation.
Fig. 3: Both PARPi-resistant PEO1 cell lines show intact HR repair.
Fig. 4: PARPi-resistant PEO1 cell lines slow fork progression through increasing unscheduled origin firing.
Fig. 5: PARPi-resistant BRCA2-deficient cells increase fork protection via suppressing EZH2/MUS81 pathway.
Fig. 6: Enhanced ABCB1-mediated drug efflux activity contributes to acquired PARPi resistance.

Similar content being viewed by others

References

  1. Howlader N NA, Krapcho M, Miller D, Brest A, Yu M, Ruhl J et al. SEER Cancer Statistics Review, 1975-2018, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2018/, based on November 2020 SEER data submission, posted to the SEER web site, April 2021.

  2. Lee JM, Ledermann JA, Kohn EC. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol. 2014;25:32–40.

    Article  PubMed  Google Scholar 

  3. King MC, Marks JH, Mandell JB, New York Breast Cancer Study G. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 2003;302:643–6.

    Article  CAS  PubMed  Google Scholar 

  4. Tew WP, Lacchetti C, Ellis A, Maxian K, Banerjee S, Bookman M, et al. PARP Inhibitors in the Management of Ovarian Cancer: ASCO Guideline. J Clin Oncol. 2020;38:3468–93.

    Article  PubMed  Google Scholar 

  5. Noordermeer SM, van Attikum H. PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. Trends Cell Biol. 2019;29:820–34.

    Article  CAS  PubMed  Google Scholar 

  6. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA, et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 2008;451:1111–5.

    Article  CAS  PubMed  Google Scholar 

  7. Haynes B, Murai J, Lee JM. Restored replication fork stabilization, a mechanism of PARP inhibitor resistance, can be overcome by cell cycle checkpoint inhibition. Cancer Treat Rev. 2018;71:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee JM, Gulley JL. Checkpoint and PARP inhibitors, for whom and when. Oncotarget 2017;8:95036–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drean A, Williamson CT, Brough R, Brandsma I, Menon M, Konde A, et al. Modeling Therapy Resistance in BRCA1/2-Mutant Cancers. Mol Cancer Ther. 2017;16:2022–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D’Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 2018;71:172–6.

    Article  Google Scholar 

  11. Dias MP, Moser SC, Ganesan S, Jonkers J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat Rev Clin Oncol. 2021;18:773–91.

    Article  PubMed  Google Scholar 

  12. Lin KK, Harrell MI, Oza AM, Oaknin A, Ray-Coquard I, Tinker AV, et al. BRCA Reversion Mutations in Circulating Tumor DNA Predict Primary and Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Disco. 2019;9:210–9.

    Article  CAS  Google Scholar 

  13. Pettitt SJ, Frankum JR, Punta M, Lise S, Alexander J, Chen Y, et al. Clinical BRCA1/2 Reversion Analysis Identifies Hotspot Mutations and Predicted Neoantigens Associated with Therapy Resistance. Cancer Disco. 2020;10:1475–88.

    Article  CAS  Google Scholar 

  14. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, Sakai W, et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 2011;29:3008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE, Lee EY. BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer Res. 1999;59:3547–51.

    CAS  PubMed  Google Scholar 

  16. Yamamoto TM, McMellen A, Watson ZL, Aguilera J, Ferguson R, Nurmemmedov E, et al. Activation of Wnt signaling promotes olaparib resistant ovarian cancer. Mol Carcinog. 2019;58:1770–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taglialatela A, Alvarez S, Leuzzi G, Sannino V, Ranjha L, Huang JW, et al. Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Mol Cell. 2017;68:414–30.e418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kolinjivadi AM, Sannino V, De Antoni A, Zadorozhny K, Kilkenny M, Techer H, et al. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Mol Cell. 2017;67:867–881 e867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mijic S, Zellweger R, Chappidi N, Berti M, Jacobs K, Mutreja K, et al. Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun. 2017;8:859.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rondinelli B, Gogola E, Yucel H, Duarte AA, van de Ven M, van der Sluijs R, et al. EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation. Nat Cell Biol. 2017;19:1371–8.

    Article  CAS  PubMed  Google Scholar 

  21. Kim H, Xu H, George E, Hallberg D, Kumar S, Jagannathan V, et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun. 2020;11:3726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gomez MK, Illuzzi G, Colomer C, Churchman M, Hollis RL, O’Connor MJ et al. Identifying and Overcoming Mechanisms of PARP Inhibitor Resistance in Homologous Recombination Repair-Deficient and Repair-Proficient High Grade Serous Ovarian Cancer Cells. Cancers (Basel) 2020;12:1503.

  23. McMullen M, Karakasis K, Madariaga A, Oza AM. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer. Cancers (Basel). 2020;12: 1607.

  24. Tran NL, Adams DG, Vaillancourt RR, Heimark RL. Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem. 2002;277:32905–14.

    Article  CAS  PubMed  Google Scholar 

  25. Allison Stewart C, Tong P, Cardnell RJ, Sen T, Li L, Gay CM, et al. Dynamic variations in epithelial-to-mesenchymal transition (EMT), ATM, and SLFN11 govern response to PARP inhibitors and cisplatin in small cell lung cancer. Oncotarget 2017;8:28575–87.

    Article  CAS  PubMed  Google Scholar 

  26. Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ, Langdon SP, et al. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 2009;69:6381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng J, Xu J. RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 2011;79:161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haaf T, Golub EI, Reddy G, Radding CM, Ward DC. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci USA. 1995;92:2298–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JM, Gordon N, Trepel JB, Lee MJ, Yu M, Kohn EC. Development of a multiparameter flow cytometric assay as a potential biomarker for homologous recombination deficiency in women with high-grade serous ovarian cancer. J Transl Med. 2015;13:239.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer. 2020;19:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Disco. 2013;3:68–81.

    Article  CAS  Google Scholar 

  32. Bunting SF, Callen E, Wong N, Chen HT, Polato F, Gunn A, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 2010;141:243–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M, Bouwman P, et al. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 2015;521:541–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Clairmont CS, Sarangi P, Ponnienselvan K, Galli LD, Csete I, Moreau L, et al. TRIP13 regulates DNA repair pathway choice through REV7 conformational change. Nat Cell Biol. 2020;22:87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, Harrell MI, et al. Secondary Somatic Mutations Restoring RAD51C and RAD51D Associated with Acquired Resistance to the PARP Inhibitor Rucaparib in High-Grade Ovarian Carcinoma. Cancer Disco. 2017;7:984–98.

    Article  CAS  Google Scholar 

  36. Cong K, Peng M, Kousholt AN, Lee WTC, Lee S, Nayak S, et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol Cell. 2021;81:3227.

    Article  CAS  PubMed  Google Scholar 

  37. Toledo L, Neelsen KJ, Lukas J. Replication Catastrophe: When a Checkpoint Fails because of Exhaustion. Mol Cell. 2017;66:735–49.

    Article  CAS  PubMed  Google Scholar 

  38. Saldivar JC, Cortez D, Cimprich KA. The essential kinase ATR: ensuring faithful duplication of a challenging genome. Nat Rev Mol Cell Biol. 2017;18:622–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gupta N, Huang T, Horibata S, Lee J. Cell cycle checkpoints and beyond: exploiting the ATR/CHK1/WEE1 pathway for the treatment of PARP inhibitor–resistant cancer. Pharm Res. 2022;178:106162.

    Article  CAS  Google Scholar 

  40. Jaspers JE, Sol W, Kersbergen A, Schlicker A, Guyader C, Xu G, et al. BRCA2-deficient sarcomatoid mammary tumors exhibit multidrug resistance. Cancer Res. 2015;75:732–41.

    Article  CAS  PubMed  Google Scholar 

  41. Ordonez LD, Hay T, McEwen R, Polanska UM, Hughes A, Delpuech O, et al. Rapid activation of epithelial-mesenchymal transition drives PARP inhibitor resistance in Brca2-mutant mammary tumours. Oncotarget 2019;10:2586–606.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yazinski SA, Comaills V, Buisson R, Genois MM, Nguyen HD, Ho CK, et al. ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes Dev. 2017;31:318–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Do KT, Kochupurakkal B, Kelland S, de Jonge A, Hedglin J, Powers A, et al. Phase 1 Combination Study of the CHK1 Inhibitor Prexasertib and the PARP Inhibitor Olaparib in High-grade Serous Ovarian Cancer and Other Solid Tumors. Clin Cancer Res. 2021;27:4710–6.

    Article  CAS  PubMed  Google Scholar 

  44. Watson ZL, Yamamoto TM, McMellen A, Kim H, Hughes CJ, Wheeler LJ, et al. Histone methyltransferases EHMT1 and EHMT2 (GLP/G9A) maintain PARP inhibitor resistance in high-grade serous ovarian carcinoma. Clin Epigenet. 2019;11:165.

    Article  CAS  Google Scholar 

  45. Huang RY, Chung VY, Thiery JP. Targeting pathways contributing to epithelial-mesenchymal transition (EMT) in epithelial ovarian cancer. Curr Drug Targets. 2012;13:1649–53.

    Article  CAS  PubMed  Google Scholar 

  46. Baribeau S, Chaudhry P, Parent S, Asselin E. Resveratrol inhibits cisplatin-induced epithelial-to-mesenchymal transition in ovarian cancer cell lines. PLoS ONE. 2014;9:e86987.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clements KE, Schleicher EM, Thakar T, Hale A, Dhoonmoon A, Tolman NJ, et al. Identification of regulators of poly-ADP-ribose polymerase inhibitor response through complementary CRISPR knockout and activation screens. Nat Commun. 2020;11:6118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhat KP, Cortez D. RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol. 2018;25:446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Q, Zhu Q, Lu X, Du Y, Cao L, Shen C, et al. G9a coordinates with the RPA complex to promote DNA damage repair and cell survival. Proc Natl Acad Sci USA. 2017;114:E6054–E6063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sorensen CS, Hansen LT, Dziegielewski J, Syljuasen RG, Lundin C, Bartek J, et al. The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair. Nat Cell Biol. 2005;7:195–201.

    Article  CAS  PubMed  Google Scholar 

  52. Kim H, George E, Ragland R, Rafail S, Zhang R, Krepler C, et al. Targeting the ATR/CHK1 Axis with PARP Inhibition Results in Tumor Regression in BRCA-Mutant Ovarian Cancer Models. Clin Cancer Res. 2017;23:3097–108.

    Article  CAS  PubMed  Google Scholar 

  53. Hall T A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–9.

    Google Scholar 

  54. Pierce AJ, Johnson RD, Thompson LH, Jasin M. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev. 1999;13:2633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Richardson C, Moynahan ME, Jasin M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 1998;12:3831–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nair J, Huang TT, Murai J, Haynes B, Steeg PS, Pommier Y, et al. Resistance to the CHK1 inhibitor prexasertib involves functionally distinct CHK1 activities in BRCA wild-type ovarian cancer. Oncogene 2020;39:5520–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the intramural research program of the CCR, NCI, NIH (ZIA BC011525 awarded to JL). This study was partly supported by an NIH/NCI grant (R37CA261987-01 awarded to BB).

Author information

Authors and Affiliations

Authors

Contributions

Methodology: TH, SB, MT,JN and JL; Formal analysis: TH and JN; Investigation: TH, JN, and JL; Writing—original draft preparation: TH and JN; Writing—review and editing: TH, SB, MT, TY, NG, BB, JL, and JN; Supervision: JL and JN; Funding acquisition: BB and JL. All authors have read and agreed to the published version of the paper.

Corresponding author

Correspondence to Jung-Min Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TT., Burkett, S.S., Tandon, M. et al. Distinct roles of treatment schemes and BRCA2 on the restoration of homologous recombination DNA repair and PARP inhibitor resistance in ovarian cancer. Oncogene 41, 5020–5031 (2022). https://doi.org/10.1038/s41388-022-02491-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02491-8

Search

Quick links