Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

USP7 targets XIAP for cancer progression: Establishment of a p53-independent therapeutic avenue for glioma

Abstract

Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific target protein substrates in order to alter their degradation rate, sub-cellular localization, interaction, and activity. The induction of apoptosis upon USP7 inhibition is well established in cancer containing wild type p53, which operates through the ‘USP7-Mdm2-p53’ axis. However, in cancers without functional p53, USP7-dependent apoptosis is induced through many other alternative pathways. Here, we have identified another critical p53 independent path active under USP7 to regulate apoptosis. Proteomics analysis identifies XIAP as a potential target of USP7-dependent deubiquitination. GSEA analysis revealed up-regulation of apoptosis signalling upon USP7 inhibition associated with XIAP down-regulation. Modulation of USP7 expression and activity in multiple cancer cell lines showed that USP7 deubiquitinates XIAP to inhibit apoptosis in a caspase-dependent pathway, and the combinatorial inhibition of USP7 and XIAP induces apoptosis in vitro and in vivo. Immunohistochemical staining revealed that grade-wise accumulation of USP7 correlated with an elevated level of XIAP in glioma tissue. This is the first report on the identification and validation of XIAP as a novel substrate of USP7 and together, they involve in the empowerment of the tumorigenic potential of cancer cells by inhibiting apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: p53 independent apoptosis uponUSP7 inhibition: XIAP is a possible mediator.
Fig. 2: XIAP: a putative substrate of USP7.
Fig. 3: XIAP and USP7 colocalize and physically interact.
Fig. 4: USP7 protects XIAP from ubiquitination-dependent degradation in p53 independent manner.
Fig. 5: USP7 regulates cellular fate through involvement of XIAP.
Fig. 6: USP7 and XIAP clinically correlated in glioma.
Fig. 7: USP7—XIAP axis is important in tumor progression.
Fig. 8: Proposed model: USP7 deubiquitinates and stabilizes anti-apoptotic protein XIAP and promotes cancer cell survival.

Similar content being viewed by others

Data availability

Data supporting the conclusion of the current study is included in the manuscript and the supplementary files.

References

  1. Skaar JR, Pagan JK, Pagano M. SCF ubiquitin ligase-targeted therapies. Nat Rev Drug Discov. 2014;13:889–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11:629–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev. 2013;93:1289–315.

    Article  CAS  PubMed  Google Scholar 

  4. Bhattacharya S, Chakraborty D, Basu M, Ghosh MK. Emerging insights into HAUSP (USP7) in physiology, cancer and other diseases. Signal Transduct Target Ther. 2018;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Qi S-M, Cheng G, Cheng X-D, Xu Z, Xu B, Zhang W-D, et al. Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-p53 Pathway for Cancer Therapy: Are We There Yet? Front Cell Dev Biol. 2020;8. https://doi.org/10.3389/fcell.2020.00233.

  6. Chauhan D, Tian Z, Nicholson B, Kumar KGS, Zhou B, Carrasco R, et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 2012;22:345–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kategaya L, Di Lello P, Rougé L, Pastor R, Clark KR, Drummond J, et al. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature. 2017;550:534–8.

    Article  CAS  PubMed  Google Scholar 

  8. Oberoi-Khanuja TK, Murali A, Rajalingam K. IAPs on the move: role of inhibitors of apoptosis proteins in cell migration. Cell Death Dis. 2013;4:e784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev. 1999;13:239–52.

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki Y, Nakabayashi Y, Nakata K, Reed JC, Takahashi R. X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem. 2001;276:27058–63.

    Article  CAS  PubMed  Google Scholar 

  11. Sung KW, Choi J, Hwang YK, Lee SJ, Kim H-J, Kim JY, et al. Overexpression of X-linked inhibitor of apoptosis protein (XIAP) is an independent unfavorable prognostic factor in childhood de novo acute myeloid leukemia. J Korean Med Sci. 2009;24:605–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tamm I, Richter S, Scholz F, Schmelz K, Oltersdorf D, Karawajew L, et al. XIAP expression correlates with monocytic differentiation in adult de novo AML: impact on prognosis. Hematol J. 2004;5:489–95.

    Article  CAS  PubMed  Google Scholar 

  13. Fulda S, Wick W, Weller M, Debatin K-M. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med. 2002;8:808–15.

    Article  CAS  PubMed  Google Scholar 

  14. Mansouri A, Zhang Q, Ridgway LD, Tian L, Claret F-X. Cisplatin resistance in an ovarian carcinoma is associated with a defect in programmed cell death control through XIAP regulation. Oncol Res. 2003;13:399–404.

    Article  PubMed  Google Scholar 

  15. Fan Y-H, Cheng J, Vasudevan SA, Dou J, Zhang H, Patel RH, et al. USP7 inhibitor P22077 inhibits neuroblastoma growth via inducing p53-mediated apoptosis. Cell Death Dis. 2013;4:e867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee G, Oh T-I, Um KB, Yoon H, Son J, Kim BM, et al. Small-molecule inhibitors of USP7 induce apoptosis through oxidative and endoplasmic reticulum stress in cancer cells. Biochem Biophys Res Commun. 2016;470:181–6.

    Article  CAS  PubMed  Google Scholar 

  17. Mellacheruvu D, Wright Z, Couzens AL, Lambert J-P, St-Denis NA, Li T, et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods. 2013;10:730–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi H, Larsen B, Lin Z-Y, Breitkreutz A, Mellacheruvu D, Fermin D, et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat Methods. 2011;8:70–73.

    Article  CAS  PubMed  Google Scholar 

  19. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles | PNAS. https://www.pnas.org/content/102/43/15545. Accessed 25 Nov 2021.

  20. Min D-J, Zhao Y, Monks A, Palmisano A, Hose C, Teicher BA, et al. Identification of pharmacodynamic biomarkers and common molecular mechanisms of response to genotoxic agents in cancer cell lines. Cancer Chemother Pharm. 2019;84:771–80.

    Article  CAS  Google Scholar 

  21. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou Z, Luo A, Shrivastava I, He M, Huang Y, Bahar I, et al. Regulation of XIAP Turnover Reveals a Role for USP11 in Promotion of Tumorigenesis. EBioMedicine. 2017;15:48–61.

    Article  PubMed  Google Scholar 

  23. Engel K, Rudelius M, Slawska J, Jacobs L, Ahangarian Abhari B, Altmann B, et al. USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 2016;8:851–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S, et al. Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene. 2002;21:2613–22.

    Article  CAS  PubMed  Google Scholar 

  25. Kojima K, Konopleva M, McQueen T, O’Brien S, Plunkett W, Andreeff M. Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood. 2006;108:993–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W. Negative feedback regulation of wild‐type p53 biosynthesis. | The EMBO Journal. https://www.embopress.org/doi/abs/10.1002/j.1460-2075.1995.tb00123.x. Accessed 22 Jul 2022.

  27. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science. 2000;288:874–7.

    Article  CAS  PubMed  Google Scholar 

  28. Emery IF, Gopalan A, Wood S, Chow K-H, Battelli C, George J, et al. Expression and function of ABCG2 and XIAP in glioblastomas. J Neurooncol. 2017;133:47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng C, Niu C, Yang Y, Wang Y, Lu M. Expression of HAUSP in gliomas correlates with disease progression and survival of patients. Oncol Rep. 2013;29:1730–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19:A68–77.

    Google Scholar 

  31. Wang L-B, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y, et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell. 2021;39:509–28.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fischer M. Census and evaluation of p53 target genes. Oncogene. 2017;36:3943–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee Y-J, Park B-S, Park H-R, Yu S-B, Kang H-M, Kim I-R. XIAP inhibitor embelin induces autophagic and apoptotic cell death in human oral squamous cell carcinoma cells. Environ Toxicol. 2017;32:2371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chou T-C. Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharm Rev. 2006;58:621–81.

    Article  CAS  PubMed  Google Scholar 

  35. Bijnsdorp IV, Giovannetti E, Peters GJ. Analysis of drug interactions. Methods Mol Biol. 2011;731:421–34.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Dube C, Gibert M, Cruickshanks N, Wang B, Coughlan M, et al. The p53 Pathway in Glioblastoma. Cancers. 2018;10:297.

    Article  PubMed Central  Google Scholar 

  37. Schauer NJ, Liu X, Magin RS, Doherty LM, Chan WC, Ficarro SB, et al. Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Sci Rep. 2020;10:5324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dar A, Shibata E, Dutta A. Deubiquitination of Tip60 by USP7 determines the activity of the p53-dependent apoptotic pathway. Mol Cell Biol. 2013;33:3309–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature. 2008;455:813–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. van der Horst A, de Vries-Smits AMM, Brenkman AB, van Triest MH, van den Broek N, Colland F, et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol. 2006;8:1064–73.

    Article  PubMed  Google Scholar 

  41. Carrà G, Panuzzo C, Torti D, Parvis G, Crivellaro S, Familiari U, et al. Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones. Oncotarget. 2017;8:35508–22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Agathanggelou A, Smith E, Davies NJ, Kwok M, Zlatanou A, Oldreive CE, et al. USP7 inhibition alters homologous recombination repair and targets CLL cells independently of ATM/p53 functional status. Blood. 2017;130:156–66.

    Article  CAS  PubMed  Google Scholar 

  43. Sampath D. Targeting deubiquitinases in CLL. Blood. 2017;130:100–1.

    Article  CAS  PubMed  Google Scholar 

  44. Su D, Ma S, Shan L, Wang Y, Wang Y, Cao C, et al. Ubiquitin-specific protease 7 sustains DNA damage response and promotes cervical carcinogenesis. J Clin Investig. 2018;128:4280–96.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang Q, Ma S, Song N, Li X, Liu L, Yang S, et al. Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J Clin Investig. 2016;126:2205–20.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR. Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer. 2007;120:2344–52.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T. A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun. 1999;264:847–54.

    Article  CAS  PubMed  Google Scholar 

  48. Krepela E, Dankova P, Moravcikova E, Krepelova A, Prochazka J, Cermak J, et al. Increased expression of inhibitor of apoptosis proteins, survivin and XIAP, in non-small cell lung carcinoma. Int J Oncol. 2009;35:1449–62.

    Article  CAS  PubMed  Google Scholar 

  49. He J, Reifenberger G, Liu L, Collins VP, James CD. Analysis of glioma cell lines for amplification and overexpression of MDM2. Genes Chromosomes Cancer. 1994;11:91–6.

    Article  CAS  PubMed  Google Scholar 

  50. Datta N, Islam S, Chatterjee U, Chatterjee S, Panda CK, Ghosh MK, et al. Promyelocytic Leukemia (PML) gene regulation: implication towards curbing oncogenesis. Cell Death Dis. 2019;10:1–18.

    Article  CAS  Google Scholar 

  51. Sarkar M, Khare V, Guturi KKN, Das N, Ghosh MK, Khare V, et al. The DEAD box protein p68: a crucial regulator of AKT/FOXO3a signaling axis in oncogenesis. Oncogene. 2015;34:5843–56.

    Article  CAS  PubMed  Google Scholar 

  52. Sarkar M, Khare V, Ghosh MK. The DEAD box protein p68: a novel coactivator of Stat3 in mediating oncogenesis. Oncogene. 2017;36:3080–93.

    Article  CAS  PubMed  Google Scholar 

  53. Huang X, Wu Z, Mei Y, Wu M. XIAP inhibits autophagy via XIAP-Mdm2-p53 signalling. EMBO J. 2013;32:2204–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhattacharya S, Ghosh MK. HAUSP, a novel deubiquitinase for Rb - MDM2 the critical regulator. FEBS J. 2014;281:3061–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khare V, Tabassum S, Chatterjee U, Chatterjee S, Ghosh MK. RNA helicase p68 deploys β-catenin in regulating RelA/p65 gene expression: implications in colon cancer. J Exp Clin Cancer Res. 2019;38:330.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bhowmik A, Chakravarti S, Ghosh A, Shaw R, Bhandary S, Bhattacharyya S, et al. Anti-SSTR2 peptide based targeted delivery of potent PLGA encapsulated 3,3’-diindolylmethane nanoparticles through blood brain barrier prevents glioma progression - PubMed. https://pubmed.ncbi.nlm.nih.gov/29029435/. Accessed 25 Nov 2021.

  57. Paul I, Ahmed SF, Bhowmik A, Deb S, Ghosh MK, Ahmed SF, et al. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene. 2013;32:1284–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thanks to Dr. Sandip Chatterjee (PARK Clinic, Kolkata) for scientific discussion and Mr. Pratyay Ghosh, Department of Electronics and Instrumentation Engineering, Techno India College, Kolkata for editing the manuscript. We also thanks to Mr. Bhaskar Basu and Ms. Srija Roy (CSIR-IICB) for technical assistance.

Funding

This work is jointly supported by the Department of Science and Technology (NanoMission: DST/NM/NT/2018/105(G); SERB: EMR/2017/000992) and Focused Basic Research (FBR #31-2(274)2020-21/Bud-II), HCT & HCP-40, CSIR, Govt. of India.

Author information

Authors and Affiliations

Authors

Contributions

GS and MKG conceptualised the study, designed and analyzed the data. GS performed most of the experiments, data acquisition, and statistical analyses. GS and PM performed animal experiments (Fig. 7) under the guidance of SS and MKG. KK performed the bioinformatic analyses (Fig. 3G, H) under the guidance of SC. GS, KK, MB and MKG wrote and edited the manuscript.

Corresponding author

Correspondence to Mrinal K. Ghosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All animal procedures were performed under the guidelines of the institutional review board and the ethics committee of CSIR-Indian Institute of Chemical Biology.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, G., Sarkar, S., Mohanta, P.S. et al. USP7 targets XIAP for cancer progression: Establishment of a p53-independent therapeutic avenue for glioma. Oncogene 41, 5061–5075 (2022). https://doi.org/10.1038/s41388-022-02486-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02486-5

This article is cited by

Search

Quick links