Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CDK7/GRP78 signaling axis contributes to tumor growth and metastasis in osteosarcoma

Abstract

Osteosarcoma derives from primitive bone-forming mesenchymal cells and is the most common primary bone malignancy. Therapeutic targeting of osteosarcoma has been unsuccessful; therefore, identifying novel osteosarcoma pathogenesis could offer new therapeutic options. CDK7 is a subunit within the general transcription factor TFIIH. We aim to explore the new mechanism by which CDK7 regulates osteosarcoma and our studies may provide new theoretical support for the use of CDK7 inhibitors in the treatment of osteosarcoma. Here, we investigate the molecular mechanism underlying the association between CDK7 and GRP78 in osteosarcoma. Specifically, we find that an E3 ubiquitin ligase TRIM21 binds and targets GRP78 for ubiquitination and degradation, whereas CDK7 phosphorylates GRP78 at T69 to inhibit TRIM21 recruitment, leading to GRP78 stabilization. Notably, a CDK7-specific inhibitor, THZ1, blunts osteosarcoma growth and metastasis. Combination treatment with CDK7 and GRP78 inhibitors yield additive effects on osteosarcoma growth and progression inhibition. Thus, simultaneous suppression of CDK7 and GRP78 activity represents a potential new approach for the treatment of osteosarcoma. In conclusion, the discovery of this previously unknown CDK7/GRP78 signaling axis provides the molecular basis and the rationale to target human osteosarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CDK7 is essential for tumor growth and progression in osteosarcoma.
Fig. 2: CDK7 interacts with GRP78 and phosphorylates GRP78 at Thr 69 site.
Fig. 3: CDK7-dependent GRP78 Thr69 phosphorylation blocks the degradation of GRP78.
Fig. 4: TRIM21 mediates the polyubiquitylation and degradation of GRP78.
Fig. 5: GRP78 promotes osteosarcoma growth and metastasis.
Fig. 6: Pharmacological inhibition of CDK7/GRP78 and effectively reduces tumor burden.
Fig. 7: A proposed model for both function and regulation of CDK7/GRP78 signaling axis in osteosarcoma.

Similar content being viewed by others

References

  1. Ferrari S, Serra M. An update on chemotherapy for osteosarcoma. Expert Opin Pharmacother (Rev). 2015;16:2727–36.

    Article  CAS  Google Scholar 

  2. Serra M, Hattinger CM. The pharmacogenomics of osteosarcoma. Pharmacogenomics J. 2017;17:11–20.

    Article  CAS  PubMed  Google Scholar 

  3. Kansara M, Teng MW, Smyth MJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722–35.

    Article  CAS  PubMed  Google Scholar 

  4. Rosales J, Han B, Lee KY. Cdk7 functions as a cdk5 activating kinase in brain. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol. 2003;13:285–96.

    Article  CAS  Google Scholar 

  5. Lolli G, Johnson LN. Recognition of Cdk2 by Cdk7. Proteins 2007;67:1048–59.

    Article  CAS  PubMed  Google Scholar 

  6. Schachter MM, Merrick KA, Larochelle S, Hirschi A, Zhang C, Shokat KM, et al. A Cdk7-Cdk4 T-loop phosphorylation cascade promotes G1 progression. Mol Cell. 2013;50:250–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014;159:1126–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Larochelle S, Amat R, Glover-Cutter K, Sanso M, Zhang C, Allen JJ, et al. Cyclin-dependent kinase control of the initiation-to-elongation switch of RNA polymerase II. Nat Struct Mol Biol. 2012;19:1108–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 2018;558:318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 2014;511:616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang Y, Zhou L, Bandyopadhyay D, Sharma K, Allen AJ, Kmieciak M, et al. The covalent CDK7 inhibitor THZ1 potently induces apoptosis in multiple myeloma cells in vitro and in vivo. Clin Cancer Res. 2019;25:6195–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuan J, Jiang YY, Mayakonda A, Huang M, Ding LW, Lin H, et al. Super-enhancers promote transcriptional dysregulation in nasopharyngeal carcinoma. Cancer Res. 2017;77:6614–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee AS. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer Res. 2007;67:3496–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ma Y, Hendershot LM. The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer (Rev). 2004;4:966–77.

    Article  CAS  Google Scholar 

  15. Gonzalez-Gronow M, Cuchacovich M, Llanos C, Urzua C, Gawdi G, Pizzo SV. Prostate cancer cell proliferation in vitro is modulated by antibodies against glucose-regulated protein 78 isolated from patient serum. Cancer Res. 2006;66:11424–31.

    Article  CAS  PubMed  Google Scholar 

  16. Yoo SA, You S, Yoon HJ, Kim DH, Kim HS, Lee K, et al. A novel pathogenic role of the ER chaperone GRP78/BiP in rheumatoid arthritis. J Exp Med. 2012;209:871–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qian Y, Wong CC, Xu J, Chen H, Zhang Y, Kang W, et al. Sodium channel subunit SCNN1B suppresses gastric cancer growth and metastasis via GRP78 degradation. Cancer Res. 2017;77:1968–82.

    Article  CAS  PubMed  Google Scholar 

  18. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 2006;66:7849–53.

    Article  CAS  PubMed  Google Scholar 

  19. Du T, Li H, Fan Y, Yuan L, Guo X, Zhu Q, et al. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun. 2019;10:2914.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chang YW, Tseng CF, Wang MY, Chang WC, Lee CC, Chen LT, et al. Deacetylation of HSPA5 by HDAC6 leads to GP78-mediated HSPA5 ubiquitination at K447 and suppresses metastasis of breast cancer. Oncogene 2016;35:1517–28.

    Article  CAS  PubMed  Google Scholar 

  21. Lolli G. Binding to DNA of the RNA-polymerase II C-terminal domain allows discrimination between Cdk7 and Cdk9 phosphorylation. Nucleic Acids Res. 2009;37:1260–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, et al. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. eLife 2015;4:e06734.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang X, Chen G, Li W, Peng C, Zhu Y, Li T, et al. Cervical cancer growth is regulated by a c-ABL-PLK1 signaling axis. Cancer Res. 2017;77:1142–54.

    Article  CAS  PubMed  Google Scholar 

  24. Bensimon A, Aebersold R, Shiloh Y. Beyond ATM: the protein kinase landscape of the DNA damage response. FEBS Lett. 2011;585:1625–39.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Liu F, Mao F, Hang Q, Huang X, He S, et al. Interaction with cyclin H/cyclin-dependent kinase 7 (CCNH/CDK7) stabilizes C-terminal binding protein 2 (CtBP2) and promotes cancer cell migration. J Biol Chem. 2013;288:9028–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rasool RU, Natesan R, Deng Q, Aras S, Lal P, Sander Effron S, et al. CDK7 inhibition suppresses castration-resistant prostate cancer through MED1 inactivation. Cancer Discov. 2019;9:1538–55.

    Article  PubMed  Google Scholar 

  27. Cho YS, Li S, Wang X, Zhu J, Zhuo S, Han Y, et al. CDK7 regulates organ size and tumor growth by safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus. Genes Dev. 2020;34:53–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haas IG. BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 1994;50:1012–20.

    Article  CAS  PubMed  Google Scholar 

  29. Pan JA, Sun Y, Jiang YP, Bott AJ, Jaber N, Dou Z, et al. TRIM21 ubiquitylates SQSTM1/p62 and suppresses protein sequestration to regulate redox homeostasis. Mol cell. 2016;62:149–51.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshimi R, Ishigatsubo Y, Ozato K. Autoantigen TRIM21/Ro52 as a possible target for treatment of systemic lupus erythematosus. Int J Rheumatol. 2012;2012:718237.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Itou J, Li W, Ito S, Tanaka S, Matsumoto Y, Sato F, et al. Sal-like 4 protein levels in breast cancer cells are post-translationally down-regulated by tripartite motif-containing 21. J Biol Chem. 2018;293:6556–64.

    Article  CAS  PubMed  Google Scholar 

  32. Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 2005;35:373–81.

    Article  CAS  PubMed  Google Scholar 

  33. Ni M, Zhang Y, Lee AS. Beyond the endoplasmic reticulum: atypical GRP78 in cell viability, signalling and therapeutic targeting. Biochemical J. 2011;434:181–8.

    Article  CAS  Google Scholar 

  34. Zhang J, Liu W, Zou C, Zhao Z, Lai Y, Shi Z, et al. Targeting super-enhancer-associated oncogenes in osteosarcoma with THZ2, a covalent CDK7 inhibitor. Clin Cancer Res. 2020;26:2681–92.

    Article  CAS  PubMed  Google Scholar 

  35. Sava GP, Fan H, Coombes RC, Buluwela L, Ali S. CDK7 inhibitors as anticancer drugs. Cancer Metastasis Rev. 2020;39:805–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu S, Marineau JJ, Rajagopal N, Hamman KB, Choi YJ, Schmidt DR, et al. Discovery and characterization of SY-1365, a selective, covalent inhibitor of CDK7. Cancer Res. 2019;79:3479–91.

    Article  PubMed  Google Scholar 

  37. Patel H, Periyasamy M, Sava GP, Bondke A, Slafer BW, Kroll SHB, et al. ICEC0942, an orally bioavailable selective inhibitor of CDK7 for cancer treatment. Mol Cancer Therapeutics. 2018;17:1156–66.

    Article  CAS  Google Scholar 

  38. Sava GP, Fan H, Fisher RA, Lusvarghi S, Pancholi S, Ambudkar SV, et al. ABC-transporter upregulation mediates resistance to the CDK7 inhibitors THZ1 and ICEC0942. Oncogene. 2020;39:651–63.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Lee AS. Stress induction of GRP78/BiP and its role in cancer. Curr Mol Med. 2006;6:45–54.

    Article  CAS  PubMed  Google Scholar 

  40. Cerezo M, Lehraiki A, Millet A, Rouaud F, Plaisant M, Jaune E, et al. Compounds triggering ER stress exert anti-melanoma effects and overcome BRAF inhibitor resistance. Cancer Cell. 2016;30:183.

    Article  CAS  PubMed  Google Scholar 

  41. Su Y, Luo X, He BC, Wang Y, Chen L, Zuo GW, et al. Establishment and characterization of a new highly metastatic human osteosarcoma cell line. Clin Exp metastasis. 2009;26:599–610.

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Zhang L, Chen G, Zhang J, Li Z, Lu W, et al. Small molecule 1’-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway. Breast Cancer Res Treat. 2014;148:279–89.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang T, Li J, Yin F, Lin B, Wang Z, Xu J, et al. Toosendanin demonstrates promising antitumor efficacy in osteosarcoma by targeting STAT3. Oncogene 2017;36:6627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang T, Li J, He Y, Yang F, Hao Y, Jin W, et al. A small molecule targeting myoferlin exerts promising anti-tumor effects on breast cancer. Nat Commun. 2018;9:3726.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang H, Cohen AL, Krishnakumar S, Wapnir IL, Veeriah S, Deng G, et al. Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Res. 2014;16:R36.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.

    Article  CAS  PubMed  Google Scholar 

  47. Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, et al. Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun. 2017;8:949.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wu Z, Liu Y, Dong W, Zhu GQ, Wu S, Bao W. CD14 in the TLRs signaling pathway is associated with the resistance to E. coli F18 in Chinese domestic weaned piglets. Sci Rep. 2016;6:24611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of Shanghai Bone Tumor Institute for their assistance.

Funding

This work was supported by NSFC (81874124); Shanghai Science and Technology Committee Rising-Star Program (19QA1407200).

Author information

Authors and Affiliations

Authors

Contributions

TZ, JJL, MKY, and XLM designed and conducted experiments, analyzed data and wrote the paper; ZYW, XJM, MXS, WS and JX provided reagents, technical and data analysis assistance; TZ, YQH, and ZDC conceived and supervised the project, designed experiments, and analyzed data. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Tao Zhang, Yingqi Hua or Zhengdong Cai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, J., Yang, M. et al. CDK7/GRP78 signaling axis contributes to tumor growth and metastasis in osteosarcoma. Oncogene 41, 4524–4536 (2022). https://doi.org/10.1038/s41388-022-02446-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02446-z

This article is cited by

Search

Quick links