Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

GPNMB: a potent inducer of immunosuppression in cancer

Abstract

The immune system is comprised of both innate and adaptive immune cells, which, in the context of cancer, collectively function to eliminate tumor cells. However, tumors can actively sculpt the immune landscape to favor the establishment of an immunosuppressive microenvironment, which promotes tumor growth and progression to metastatic disease. Glycoprotein-NMB (GPNMB) is a transmembrane glycoprotein that is overexpressed in a variety of cancers. It can promote primary tumor growth and metastasis, and GPNMB expression correlates with poor prognosis and shorter recurrence-free survival in patients. There is growing evidence supporting an immunosuppressive role for GPNMB in the context of malignancy. This review provides a description of the emerging roles of GPNMB as an inducer of immunosuppression, with a particular focus on its role in mediating cancer progression by restraining pro-inflammatory innate and adaptive immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GPNMB modulates innate immunity by negatively regulating macrophage and dendritic cell pro-inflammatory responses.
Fig. 2: GPNMB modulates adaptive immunity by dampening T cell responses. GPNMB inhibits T cell activation, proliferation, and infiltration.
Fig. 3: GPNMB inhibition in combination with immune modulators for overcoming resistance to immunotherapeutic agents.

Similar content being viewed by others

References

  1. Bejarano L, Jordao MJC, Joyce JA. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021;11:933–59.

    Article  CAS  PubMed  Google Scholar 

  2. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petroni G, Buque A, Coussens LM, Galluzzi L. Targeting oncogene and non-oncogene addiction to inflame the tumour microenvironment. Nat Rev Drug Discov. 2022;21:440–62.

  4. Ganesh K, Massague J. Targeting metastatic cancer. Nat Med. 2021;27:34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat Rev Clin Oncol. 2019;16:151–67.

    Article  PubMed  Google Scholar 

  6. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maric G, Rose AA, Annis MG, Siegel PM. Glycoprotein non-metastatic b (GPNMB): a metastatic mediator and emerging therapeutic target in cancer. Onco Targets Ther. 2013;6:839–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rose AA, Annis MG, Dong Z, Pepin F, Hallett M, Park M, et al. ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS ONE. 2010;5:e12093.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Biswas KB, Takahashi A, Mizutani Y, Takayama S, Ishitsuka A, Yang L, et al. GPNMB is expressed in human epidermal keratinocytes but disappears in the vitiligo lesional skin. Sci Rep. 2020;10:4930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhuo H, Zhou L. Gpnmb/osteoactivin: an indicator and therapeutic target in tumor and nontumorous lesions. Pharmazie 2016;71:555–61.

    CAS  PubMed  Google Scholar 

  12. Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: a key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J. 2020;34:8810–23.

    Article  CAS  PubMed  Google Scholar 

  13. Huang JJ, Ma WJ, Yokoyama S. Expression and immunolocalization of Gpnmb, a glioma-associated glycoprotein, in normal and inflamed central nervous systems of adult rats. Brain Behav. 2012;2:85–96.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hu X, Zhang P, Xu Z, Chen H, Xie X. GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: potential role for tissue engineering bone. J Cell Biochem. 2013;114:2729–37.

    Article  CAS  PubMed  Google Scholar 

  15. Yu B, Alboslemy T, Safadi F, Kim MH. Glycoprotein nonmelanoma clone B regulates the crosstalk between macrophages and mesenchymal stem cells toward wound repair. J Investig Dermatol. 2018;138:219–27.

    Article  CAS  PubMed  Google Scholar 

  16. Yu B, Sondag GR, Malcuit C, Kim MH, Safadi FF. Macrophage-associated osteoactivin/GPNMB mediates mesenchymal stem cell survival, proliferation, and migration Via a CD44-dependent mechanism. J Cell Biochem. 2016;117:1511–21.

    Article  CAS  PubMed  Google Scholar 

  17. Kumagai K, Tabu K, Sasaki F, Takami Y, Morinaga Y, Mawatari S, et al. Glycoprotein nonmetastatic melanoma B (Gpnmb)-positive macrophages contribute to the balance between fibrosis and fibrolysis during the repair of acute liver injury in mice. PLoS ONE. 2015;10:e0143413.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci USA. 2012;109:E3186–3195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abe H, Uto H, Takami Y, Takahama Y, Hasuike S, Kodama M, et al. Transgenic expression of osteoactivin in the liver attenuates hepatic fibrosis in rats. Biochem Biophys Res Commun. 2007;356:610–5.

    Article  CAS  PubMed  Google Scholar 

  20. Li B, Castano AP, Hudson TE, Nowlin BT, Lin SL, Bonventre JV, et al. The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. FASEB J. 2010;24:4767–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou L, Zhuo H, Ouyang H, Liu Y, Yuan F, Sun L, et al. Glycoprotein non-metastatic melanoma protein b (Gpnmb) is highly expressed in macrophages of acute injured kidney and promotes M2 macrophages polarization. Cell Immunol. 2017;316:53–60.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao S, Cui L, Zheng X, Ji Y, Yu C. Meloxicam alleviates sepsis-induced kidney injury by suppression of inflammation and apoptosis via upregulating GPNMB. Appl Bionics Biomech. 2022;2022:1790104.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sasaki F, Kumagai K, Uto H, Takami Y, Kure T, Tabu K, et al. Expression of glycoprotein nonmetastatic melanoma protein B in macrophages infiltrating injured mucosa is associated with the severity of experimental colitis in mice. Mol Med Rep. 2015;12:7503–11.

    Article  CAS  PubMed  Google Scholar 

  24. Song R, Lin L. Glycoprotein nonmetastatic melanoma protein B (GPNMB) ameliorates the inflammatory response in periodontal disease. Inflammation 2019;42:1170–8.

    Article  CAS  PubMed  Google Scholar 

  25. Prabata A, Ikeda K, Rahardini EP, Hirata KI, Emoto N. GPNMB plays a protective role against obesity-related metabolic disorders by reducing macrophage inflammatory capacity. J Biol Chem. 2021;297:101232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palisoc PJ, Vaikutis L, Gurrea-Rubio M, Model EN, O’Mara MM, Ory S, et al. Functional characterization of glycoprotein nonmetastatic melanoma protein B in scleroderma fibrosis. Front Immunol. 2022;13:814533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou X, Li F, Kong L, Tomita H, Li C, Cao W. Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. J Biol Chem. 2005;280:31240–8.

    Article  CAS  PubMed  Google Scholar 

  28. Katayama A, Nakatsuka A, Eguchi J, Murakami K, Teshigawara S, Kanzaki M, et al. Beneficial impact of Gpnmb and its significance as a biomarker in nonalcoholic steatohepatitis. Sci Rep. 2015;5:16920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nakano Y, Suzuki Y, Takagi T, Kitashoji A, Ono Y, Tsuruma K, et al. Glycoprotein nonmetastatic melanoma protein B (GPNMB) as a novel neuroprotective factor in cerebral ischemia-reperfusion injury. Neuroscience 2014;277:123–31.

    Article  CAS  PubMed  Google Scholar 

  30. Neal ML, Boyle AM, Budge KM, Safadi FF, Richardson JR. The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. J Neuroinflammation. 2018;15:73.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tanaka H, Shimazawa M, Kimura M, Takata M, Tsuruma K, Yamada M, et al. The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis. Sci Rep. 2012;2:573.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ono Y, Tsuruma K, Takata M, Shimazawa M, Hara H. Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase. Sci Rep. 2016;6:23241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The Role of GPNMB in inflammation. Front Immunol. 2021;12:674739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol. 2011;11:750–61.

    Article  CAS  PubMed  Google Scholar 

  35. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol. 2014;5:614.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ripoll VM, Irvine KM, Ravasi T, Sweet MJ, Hume DA. Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol. 2007;178:6557–66.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H, Zhang S, Dang X, Lin L, Ren L, Song R. GPNMB plays an active role in the M1/M2 balance. Tissue Cell. 2021;74:101683.

    Article  PubMed  Google Scholar 

  38. Anderson MG, Libby RT, Gould DB, Smith RS, John SW. High-dose radiation with bone marrow transfer prevents neurodegeneration in an inherited glaucoma. Proc Natl Acad Sci USA. 2005;102:4566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knodler A, Schmidt SM, Bringmann A, Weck MM, Brauer KM, Holderried TA, et al. Post-transcriptional regulation of adapter molecules by IL-10 inhibits TLR-mediated activation of antigen-presenting cells. Leukemia 2009;23:535–44.

    Article  CAS  PubMed  Google Scholar 

  40. Schwarzbich MA, Gutknecht M, Salih J, Salih HR, Brossart P, Rittig SM, et al. The immune inhibitory receptor osteoactivin is upregulated in monocyte-derived dendritic cells by BCR-ABL tyrosine kinase inhibitors. Cancer Immunol Immunother. 2012;61:193–202.

    Article  CAS  PubMed  Google Scholar 

  41. Gutknecht M, Geiger J, Joas S, Dorfel D, Salih HR, Muller MR, et al. The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells. Cell Commun Signal. 2015;13:19.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chung JS, Bonkobara M, Tomihari M, Cruz PD Jr, Ariizumi K. The DC-HIL/syndecan-4 pathway inhibits human allogeneic T-cell responses. Eur J Immunol. 2009;39:965–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yamashita Y, Oritani K, Miyoshi EK, Wall R, Bernfield M, Kincade PW. Syndecan-4 is expressed by B lineage lymphocytes and can transmit a signal for formation of dendritic processes. J Immunol. 1999;162:5940–8.

    CAS  PubMed  Google Scholar 

  44. Chung JS, Dougherty I, Cruz PD Jr, Ariizumi K. Syndecan-4 mediates the coinhibitory function of DC-HIL on T cell activation. J Immunol. 2007;179:5778–84.

    Article  CAS  PubMed  Google Scholar 

  45. Chung JS, Sato K, Dougherty II, Cruz PD Jr, Ariizumi K. DC-HIL is a negative regulator of T lymphocyte activation. Blood 2007;109:4320–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chung JS, Cruz PD Jr, Ariizumi K. Inhibition of T-cell activation by syndecan-4 is mediated by CD148 through protein tyrosine phosphatase activity. Eur J Immunol. 2011;41:1794–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akiyoshi H, Chung JS, Tomihari M, Cruz PD Jr, Ariizumi K. Depleting syndecan-4+ T lymphocytes using toxin-bearing dendritic cell-associated heparan sulfate proteoglycan-dependent integrin ligand: a new opportunity for treating activated T cell-driven disease. J Immunol. 2010;184:3554–61.

    Article  CAS  PubMed  Google Scholar 

  48. Ramani V, Chung JS, Ariizumi K, Cruz PD, Jr Soluble DC-HIL/Gpnmb modulates T-lymphocyte extravasation to inflamed skin. J Investig Dermatol. 2021;142:1372–80.

  49. Chung JS, Tomihari M, Tamura K, Kojima T, Cruz PD Jr, Ariizumi K. The DC-HIL ligand syndecan-4 is a negative regulator of T-cell allo-reactivity responsible for graft-versus-host disease. Immunology 2013;138:173–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chung JS, Tamura K, Akiyoshi H, Cruz PD Jr, Ariizumi K. The DC-HIL/syndecan-4 pathway regulates autoimmune responses through myeloid-derived suppressor cells. J Immunol. 2014;192:2576–84.

    Article  CAS  PubMed  Google Scholar 

  51. Cao LY, Chung JS, Teshima T, Feigenbaum L, Cruz PD Jr, Jacobe HT, et al. Myeloid-derived suppressor cells in psoriasis are an expanded population exhibiting diverse T-cell-suppressor mechanisms. J Investig Dermatol. 2016;136:1801–10.

    Article  CAS  PubMed  Google Scholar 

  52. Tsou PS, Sawalha AH. Glycoprotein nonmetastatic melanoma protein B: a key mediator and an emerging therapeutic target in autoimmune diseases. FASEB J. 2020;34:8810–23.

  53. Rose AAN, Biondini M, Curiel R, Siegel PM. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol Ther. 2017;179:127–41.

    Article  CAS  PubMed  Google Scholar 

  54. Chen C, Okita Y, Watanabe Y, Abe F, Fikry MA, Ichikawa Y, et al. Glycoprotein nmb is exposed on the surface of dormant breast cancer cells and induces stem cell-like properties. Cancer Res. 2018;78:6424–35.

    Article  CAS  PubMed  Google Scholar 

  55. Aponte PM, Caicedo A. Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int. 2017;2017:5619472.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Okita Y, Chen C, Kato M. Cell-surface GPNMB and induction of stemness. Oncotarget 2018;9:37289–90.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sugimura K, Miyata H, Tanaka K, Takahashi T, Kurokawa Y, Yamasaki M, et al. High infiltration of tumor-associated macrophages is associated with a poor response to chemotherapy and poor prognosis of patients undergoing neoadjuvant chemotherapy for esophageal cancer. J Surg Oncol. 2015;111:752–9.

    Article  PubMed  Google Scholar 

  58. Szulzewsky F, Pelz A, Feng X, Synowitz M, Markovic D, Langmann T, et al. Glioma-associated microglia/macrophages display an expression profile different from M1 and M2 polarization and highly express Gpnmb and Spp1. PLoS ONE. 2015;10:e0116644.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Feng X, Zhang L, Ke S, Liu T, Hao L, Zhao P, et al. High expression of GPNMB indicates an unfavorable prognosis in glioma: Combination of data from the GEO and CGGA databases and validation in tissue microarray. Oncol Lett. 2020;20:2356–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J Immunol. 2010;185:642–52.

    Article  CAS  PubMed  Google Scholar 

  61. Liguori M, Digifico E, Vacchini A, Avigni R, Colombo FS, Borroni EM, et al. The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol. 2021;18:711–22.

    Article  CAS  PubMed  Google Scholar 

  62. Maric G, Annis MG, Dong Z, Rose AA, Ng S, Perkins D, et al. GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin alpha5beta1 for efficient breast cancer metastasis. Oncogene 2015;34:5494–504.

    Article  CAS  PubMed  Google Scholar 

  63. Lai YS, Wahyuningtyas R, Aui SP, Chang KT. Autocrine VEGF signalling on M2 macrophages regulates PD‐L1 expression for immunomodulation of T cells. J Cell Mol Med. 2019;23:1257–67.

    CAS  PubMed  Google Scholar 

  64. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chung JS, Tamura K, Cruz PD Jr, Ariizumi K. DC-HIL-expressing myelomonocytic cells are critical promoters of melanoma growth. J Investig Dermatol. 2014;134:2784–94.

    Article  CAS  PubMed  Google Scholar 

  66. Turrentine J, Chung J-S, Nezafati K, Tamura K, Harker-Murray A, Huth J, et al. DC-HIL+ CD14+ HLA-DRno/low cells are a potential blood marker and therapeutic target for melanoma. J investig Dermatol. 2014;134:2839.

    Article  CAS  PubMed  Google Scholar 

  67. Kobayashi M, Chung J-S, Beg M, Arriaga Y, Verma U, Courtney K, et al. Blocking monocytic myeloid-derived suppressor cell function via anti-DC-HIL/GPNMB antibody restores the in vitro integrity of T cells from cancer patients. Clin Cancer Res. 2019;25:828–38.

    Article  CAS  PubMed  Google Scholar 

  68. Tomihari M, Chung JS, Akiyoshi H, Cruz PD Jr, Ariizumi K. DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res. 2010;70:5778–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Chung JS, Ramani V, Kobayashi M, Fattah F, Popat V, Zhang S, et al. DC-HIL/Gpnmb is a negative regulator of tumor response to immune checkpoint inhibitors. Clin Cancer Res. 2020;26:1449–59.

    Article  CAS  PubMed  Google Scholar 

  70. Brodt P. Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clin Cancer Res. 2016;22:5971–82.

    Article  CAS  PubMed  Google Scholar 

  71. Ramani V, Teshima T, Tamura K, Chung JS, Kobayashi M, Cruz PD Jr, et al. Melanoma-derived soluble DC-HIL/GPNMB promotes metastasis by excluding T-lymphocytes from the pre-metastatic niches. J Investig Dermatol. 2018;138:2443–51.

    Article  CAS  PubMed  Google Scholar 

  72. Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol. 2020;20:25–39.

    Article  CAS  PubMed  Google Scholar 

  73. Xu X, Xie K, Li B, Xu L, Huang L, Feng Y, et al. Adaptive resistance in tumors to anti-PD-1 therapy through re-immunosuppression by upregulation of GPNMB expression. Int Immunopharmacol. 2021;101:108199.

    Article  CAS  PubMed  Google Scholar 

  74. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ren F, Zhao Q, Liu B, Sun X, Tang Y, Huang H, et al. Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. J Cell Physiol. 2020;235:2738–52.

    Article  CAS  PubMed  Google Scholar 

  76. Pollack VA, Alvarez E, Tse KF, Torgov MY, Xie S, Shenoy SG, et al. Treatment parameters modulating regression of human melanoma xenografts by an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother Pharmacol. 2007;60:423–35.

    Article  CAS  PubMed  Google Scholar 

  77. Ott PA, Pavlick AC, Johnson DB, Hart LL, Infante JR, Luke JJ, et al. A phase 2 study of glembatumumab vedotin, an antibody-drug conjugate targeting glycoprotein NMB, in patients with advanced melanoma. Cancer. 2019;125:1113–23.

    Article  CAS  PubMed  Google Scholar 

  78. Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD, et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol. 2014;32:3659–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hasanov M, Rioth MJ, Kendra K, Hernandez-Aya L, Joseph RW, Williamson S, et al. A phase ii study of glembatumumab vedotin for metastatic uveal melanoma. Cancers. 2020;12:2270.

    Article  CAS  PubMed Central  Google Scholar 

  80. Khan SA, Sun Z, Dahlberg S, Malhotra J, Keresztes R, Ikpeazu C. Efficacy and safety of glembatumumab vedotin in patients with advanced or metastatic squamous cell carcinoma of the lung (PrECOG 0504). JTO. Clin Res Rep. 2021;2:100166–71.

    Google Scholar 

  81. Kopp LM, Malempati S, Krailo M, Gao Y, Buxton A, Weigel BJ, et al. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: A report from the Children’s Oncology Group. Eur J Cancer. 2019;121:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bendell J, Saleh M, Rose AA, Siegel PM, Hart L, Sirpal S, et al. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with locally advanced or metastatic breast cancer. J Clin Oncol. 2014;32:3619–25.

    Article  CAS  PubMed  Google Scholar 

  83. Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, et al. EMERGE: a randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J Clin Oncol. 2015;33:1609–19.

    Article  CAS  PubMed  Google Scholar 

  84. Yardley DA, Melisko ME, Forero A, Daniel BR, Montero AJ, Guthrie TH, et al. METRIC: a randomized international study of the antibody-drug conjugate glembatumumab vedotin (GV or CDX-011) in patients (pts) with metastatic gpNMB-overexpressing triple-negative breast cancer (TNBC). J Clin Oncol. 2015;33:TPS1110.

    Article  Google Scholar 

  85. Biondini M, Kiepas A, El-Houjeiri L, Annis MG, Hsu BE, Fortier AM et al. HSP90 inhibitors induce GPNMB cell-surface expression by modulating lysosomal positioning and sensitize breast cancer cells to glembatumumab vedotin. Oncogene 2022;41:1701–17.

  86. Rose AA, Annis MG, Frederick DT, Biondini M, Dong Z, Kwong L, et al. MAPK pathway inhibitors sensitize BRAF-mutant melanoma to an antibody-drug conjugate targeting GPNMB. Clin Cancer Res. 2016;22:6088–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N Engl J Med. 2020;382:610–21.

    Article  CAS  PubMed  Google Scholar 

  88. Seligson JM, Patron AM, Berger MJ, Harvey RD, Seligson ND. Sacituzumab Govitecan-hziy: an antibody-drug conjugate for the treatment of refractory, metastatic, triple-negative breast cancer. Ann Pharmacother. 2021;55:921–31.

    Article  CAS  PubMed  Google Scholar 

  89. Muller P, Martin K, Theurich S, Schreiner J, Savic S, Terszowski G, et al. Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res. 2014;2:741–55.

    Article  PubMed  Google Scholar 

  90. Martin K, Muller P, Schreiner J, Prince SS, Lardinois D, Heinzelmann-Schwarz VA, et al. The microtubule-depolymerizing agent ansamitocin P3 programs dendritic cells toward enhanced anti-tumor immunity. Cancer Immunol Immunother. 2014;63:925–38.

    Article  CAS  PubMed  Google Scholar 

  91. Emerson DA, Redmond WL. Overcoming tumor-induced immune suppression: from relieving inhibition to providing costimulation with T cell agonists. BioDrugs. 2018;32:221–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burris HA, Infante JR, Ansell SM, Nemunaitis JJ, Weiss GR, Villalobos VM, et al. Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, in patients with advanced solid tumors. J Clin Oncol. 2017;35:2028–36.

    Article  CAS  PubMed  Google Scholar 

  93. Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32:2959–66.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li X, Gruosso T, Zuo D, Omeroglu A, Meterissian S, Guiot MC, et al. Infiltration of CD8(+) T cells into tumor cell clusters in triple-negative breast cancer. Proc Natl Acad Sci USA. 2019;116:3678–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ono M, Tsuda H, Shimizu C, Yamamoto S, Shibata T, Yamamoto H, et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;132:793–805.

    Article  CAS  PubMed  Google Scholar 

  96. Lu X, Horner JW, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 2017;543:728–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017;52:71–81.

    Article  PubMed  Google Scholar 

  98. Kitano S, Postow MA, Ziegler CG, Kuk D, Panageas KS, Cortez C, et al. Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes. Cancer Immunol Res. 2014;2:812–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Turaj AH, Hussain K, Cox KL, Rose-Zerilli MJJ, Testa J, Dahal LN, et al. Antibody tumor targeting is enhanced by CD27 agonists through myeloid recruitment. Cancer Cell. 2017;32:777–791.e776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Voorwerk L, Slagter M, Horlings HM, Sikorska K, van de Vijver KK, de Maaker M, et al. Immune induction strategies in metastatic triple-negative breast cancer to enhance the sensitivity to PD-1 blockade: the TONIC trial. Nat Med. 2019;25:920–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Siegel laboratory for thoughtful discussions and critical reading of the manuscript. Work referenced from the author’s laboratory was supported by a Project grant to PMS from the Canadian Institutes of Health Research (CIHR PJT-153327). PMS is a McGill University William Dawson Scholar. Figures created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

AML conducted the literature search, wrote the first draft and contributed to writing of final draft. MGA and PMS contributed to writing and editing of final drafts.

Corresponding author

Correspondence to Peter M. Siegel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazaratos, AM., Annis, M.G. & Siegel, P.M. GPNMB: a potent inducer of immunosuppression in cancer. Oncogene 41, 4573–4590 (2022). https://doi.org/10.1038/s41388-022-02443-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02443-2

Search

Quick links