Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA bisulfite sequencing reveals NSUN2-mediated suppression of epithelial differentiation in pancreatic cancer

Abstract

Posttranscriptional modifications in RNA have been considered to contribute to disease pathogenesis and tumor progression. NOL1/NOP2/Sun domain family member 2 (NSUN2) is an RNA methyltransferase that promotes tumor progression in several cancers. Pancreatic cancer relapse inevitably occurs even in cases where primary tumors have been successfully treated. Associations of cancer progression due to reprogramming of the cancer methyl-metabolome and the cancer genome have been noted, but the effect of base modifications, namely 5-methylcytosine (m5C), in the transcriptome remains unclear. Aberrant regulation of 5-methylcytosine turnover in cancer may affect posttranscriptional modifications in coding and noncoding RNAs in disease pathogenesis. Mutations in NSUN2 have been reported as drivers of neurodevelopmental disorders in mice, and upregulated expression of NSUN2 in tumors of the breast, bladder, and pancreas has been reported. In this study, we conducted mRNA whole transcriptomic bisulfite sequencing to categorize NSUN2 target sites in the mRNA of human pancreatic cancer cells. We identified a total of 2829 frequent m5C sites in mRNA from pancreatic cancer cells. A total of 90.9% (2572/2829) of these m5C sites were mapped to annotated genes in autosomes and sex chromosomes X and Y. Immunohistochemistry staining confirmed that the NSUN2 expression was significantly upregulated in cancer lesions in the LSL-KrasG12D/+;Trp53fl/fl;Pdx1-Cre (KPC) spontaneous pancreatic cancer mouse model induced by Pdx1-driven Cre/lox system expressing mutant KrasG12D and p53 deletion. The in vitro phenotypic analysis of NSUN2 knockdown showed mild effects on pancreatic cancer cell 2D/3D growth, morphology and gemcitabine sensitivity in the early phase of tumorigenesis, but cumulative changes after multiple cell doubling passages over time were required for these mutations to accumulate. Syngeneic transplantation of NSUN2-knockdown KPC cells via subcutaneous injection showed decreased stromal fibrosis and restored differentiation of ductal epithelium in vivo.

Significance

  • Transcriptome-wide mRNA bisulfite sequencing identified candidate m5C sites of mRNAs in human pancreatic cancer cells.

  • NSUN2-mediated m5C mRNA metabolism was observed in a mouse model of pancreatic cancer.

  • NSUN2 regulates cancer progression and epithelial differentiation via mRNA methylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overexpressed NSUN2 in pancreatic cancer associated with patient’s survival and tumorigenesis.
Fig. 2: Identification of NSUN2-m5C sites.
Fig. 3: The functional analysis of NSUN2-m5C sites.
Fig. 4: Integrated protein expression and candidate genes with differentially methylated m5C mRNA in NSUN2 knockdown cells.
Fig. 5: NSUN2 participates in cellular proliferation in 3D organoid culture and in DNA repair of DSBs.
Fig. 6: NSUN2 knockdown diminished the growth of high-grade tumor in immunocompetent mice.

Similar content being viewed by others

Data availability

GSE182148.

References

  1. Martinez NM, Gilbert WV. Pre-mRNA modifications and their role in nuclear processing. Quant Biol. 2018;6:210–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan TN. (6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Motorin Y, Lyko F, Helm M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 2010;38:1415–30.

    Article  CAS  PubMed  Google Scholar 

  4. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, et al. RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev. 2010;24:1590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19:900–5.

    Article  CAS  PubMed  Google Scholar 

  6. Gigova A, Duggimpudi S, Pollex T, Schaefer M, Kos M. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA. 2014;20:1632–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schosserer M, Minois N, Angerer TB, Amring M, Dellago H, Harreither E, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6:6158.

    Article  CAS  PubMed  Google Scholar 

  8. Salditt-Georgieff M, Jelinek W, Darnell JE, Furuichi Y, Morgan M, Shatkin A. Methyl labeling of HeLa cell hnRNA: a comparison with mRNA. Cell. 1976;7:227–37.

    Article  CAS  PubMed  Google Scholar 

  9. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 2012;40:5023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amort T, Rieder D, Wille A, Khokhlova-Cubberley D, Riml C, Trixl L, et al. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol. 2017;18:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Legrand C, Tuorto F, Hartmann M, Liebers R, Jacob D, Helm M, et al. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 2017;27:1589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang X, Yang Y, Sun B-F, Chen Y-S, Xu J-W, Lai W-Y, et al. 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res (Original Artic). 2017;27:606.

    Article  CAS  Google Scholar 

  13. Huang T, Chen W, Liu J, Gu N, Zhang R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat Struct Mol Biol. 2019;26:380–8.

    Article  CAS  PubMed  Google Scholar 

  14. Schumann U, Zhang H-N, Sibbritt T, Pan A, Horvath A, Gross S, et al. Multiple links between 5-methylcytosine content of mRNA and translation. BMC Biol. 2020;18:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang Y, Wang L, Han X, Yang W-L, Zhang M, Ma H-L, et al. RNA 5-Methylcytosine Facilitates the Maternal-to-Zygotic Transition by Preventing Maternal mRNA Decay. Mol Cell. 2019;75:1188–1202.

    Article  CAS  PubMed  Google Scholar 

  16. Chen X, Li A, Sun B-F, Yang Y, Han Y-N, Yuan X, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019;21:978–90.

    Article  CAS  PubMed  Google Scholar 

  17. Frye M, Watt FM. The RNA methyltransferase misu (NSun2) mediates myc-induced proliferation and is upregulated in tumors. Curr Biol. 2006;16:971–81.

    Article  CAS  PubMed  Google Scholar 

  18. Okamoto M, Hirata S, Sato S, Koga S, Fujii M, Qi G, et al. Frequent increased gene copy number and high protein expression of tRNA (Cytosine-5-)-methyltransferase (NSUN2) in human cancers. DNA Cell Biol. 2011;31:660–71.

    Article  PubMed  CAS  Google Scholar 

  19. Gao Y, Wang Z, Zhu Y, Zhu Q, Yang Y, Jin Y, et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci. 2019;110:3510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yi J, Gao R, Chen Y, Yang Z, Han P, Zhang H, et al. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget. 2017;8:20751–65.

    Article  PubMed  Google Scholar 

  21. Tang H, Fan X, Xing J, Liu Z, Jiang B, Dou Y, et al. NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. Aging. 2015;7:1143–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M, et al. NSUN2-Mediated m5C Methylation and METTL3/METTL14-Mediated m6A Methylation Cooperatively Enhance p21 Translation. J Cell Biochem. 2017;118:2587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xing J, Yi J, Cai X, Tang H, Liu Z, Zhang X, et al. NSun2 promotes cell growth via elevating cyclin-dependent kinase 1 translation. Mol Cell Biol. 2015;35:4043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Disco. 2019;9:1102–23.

    Article  CAS  Google Scholar 

  25. Taoka M, Nobe Y, Yamaki Y, Sato K, Ishikawa H, Izumikawa K, et al. Landscape of the complete RNA chemical modifications in the human 80S ribosome. Nucleic Acids Res. 2018;46:9289–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rieder D, Amort T, Kugler E, Lusser A, Trajanoski Z. meRanTK: methylated RNA analysis ToolKit. Bioinformatics. 2016;32:782–5.

    Article  CAS  PubMed  Google Scholar 

  27. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14:1188–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kapil S, Sharma BK, Patil M, Elattar S, Yuan J, Hou SX, et al. The cell polarity protein Scrib functions as a tumor suppressor in liver cancer. Oncotarget. 2017;8:26515–31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Anastas JN, Biechele TL, Robitaille M, Muster J, Allison KH, Angers S, et al. A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression. Oncogene. 2012;31:3696–708.

    Article  CAS  PubMed  Google Scholar 

  30. Sun Z, Xue S, Xu H, Hu X, Chen S, Yang Z, et al. Effects of NSUN2 deficiency on the mRNA 5-methylcytosine modification and gene expression profile in HEK293 cells. Epigenomics. 2019;11:439–53.

    Article  CAS  PubMed  Google Scholar 

  31. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48:W509–W514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schumann U, Zhang HN, Sibbritt T, Pan A, Horvath A, Gross S, et al. Multiple links between 5-methylcytosine content of mRNA and translation. BMC Biol. 2020;18:40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tinder TL, Subramani DB, Basu GD, Bradley JM, Schettini J, Million A, et al. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma. J Immunol. 2008;181:3116–25.

    Article  CAS  PubMed  Google Scholar 

  34. Aldaz P, Otaegi-Ugartemendia M, Saenz-Antoñanzas A, Garcia-Puga M, Moreno-Valladares M, Flores JM, et al. SOX9 promotes tumor progression through the axis BMI1-p21CIP. Sci Rep. 2020;10:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schaefer M, Pollex T, Hanna K, Lyko F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 2009;37:e12–e12.

    Article  PubMed  CAS  Google Scholar 

  36. Selmi T, Hussain S, Dietmann S, Heiß M, Borland K, Flad S, et al. Sequence- and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res. 2021;49:1006–22.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao X, Yang Y, Sun B-F, Shi Y, Yang X, Xiao W, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24:1403–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Courtney DG, Tsai K, Bogerd HP, Kennedy EM, Law BA, Emery A, et al. Epitranscriptomic addition of m5C to HIV-1 Transcripts Regulates Viral Gene Expression. Cell Host Microbe. 2019;26:217–.e216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B, et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA. 2010;107:246–51.

    Article  CAS  PubMed  Google Scholar 

  40. Ding LY, Hou YC, Kuo IY, Hsu TY, Tsai TC, Chang HW, et al. Epigenetic silencing of AATK in acinar to ductal metaplasia in murine model of pancreatic cancer. Clin Epigenetics. 2020;12:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA. 2006;103:5947–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang M, Ragan BG, Park JH. Issues in outcomes research: an overview of randomization techniques for clinical trials. J Athl Train. 2008;43:215–21.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rieder D, Amort T, Kugler E, Lusser A, Trajanoski Z. meRanTK: methylated RNA analysis ToolKit. Bioinformatics. 2015;32:782–5.

    Article  PubMed  CAS  Google Scholar 

  44. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge technical services from core facilities: Research Center of Clinical Medicine, Center of Cell Therapy, and the Human Biobank and the Cancer Data Bank of National Cheng Kung University Hospital. The authors thank the Core Research Laboratory and the Laboratory Animal Center, College of Medicine, National Cheng Kung University; and Taiwan Animal Consortium. We thank the technical services provided by the following National Core Facilities: Bioimaging Core Facility; and the International Institute for Macromolecular Analysis and Nanomedicine Innovations, National Core Facility for Biopharmaceuticals, Ministry of Science and Technology, Taiwan. Sequencing run, computational analyses and data mining were performed using the system provided by the Center for Bioinformatics and Digital Health at the National Cheng Kung University, supported by Ministry of Science and Technology, Taiwan. The authors acknowledge the mass spectrometry technical research services from NTU Consortia of Key Technologies and NTU Instrumentation Center. We thank the National RNAi Core Facility at Academia Sinica in Taiwan for providing shRNA reagents and related services. This work is supported by grant support from the MOST (110-2320-B-006-038- and 110-2314-B-006-107-) to PHH.

Author information

Authors and Affiliations

Authors

Contributions

Investigation: experiments, library construction, mapping of reads to genome and transcriptome, and m5C site analysis: SYC; Bioinformatics: SYC, KLC, CJC, CHC; Sequencing assistance: PCC. Investigation: cellular and animal experiments: SYC, LYD, YYC, KLC; Transmission electron microscopy experiments: YYC, YNW, SRW; Formal analysis: SYC, PHH. Clinical specimen analysis: CTL, PHH, YCH, YSS. Concept and experiment design: SYC, CHY, and PHH. Writing of initial draft: SYC. Writing: SYC and PHH with proof-read and inputs from all authors. Supervision: PHH. All authors read and approve the final version of the manuscript.

Corresponding authors

Correspondence to Yan-Shen Shan or Po-Hsien Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SY., Chen, KL., Ding, LY. et al. RNA bisulfite sequencing reveals NSUN2-mediated suppression of epithelial differentiation in pancreatic cancer. Oncogene 41, 3162–3176 (2022). https://doi.org/10.1038/s41388-022-02325-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02325-7

This article is cited by

Search

Quick links