Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NEDD9 links anaplastic thyroid cancer stemness to chromosomal instability through integrated centrosome asymmetry and DNA sensing regulation

Abstract

Stemness and chromosomal instability (CIN) are two common contributors to intratumor heterogeneity and therapy relapse in advanced cancer, but their interplays are poorly defined. Here, in anaplastic thyroid cancer (ATC), we show that ALDH+ stem-like cancer cells possess increased CIN-tolerance owing to transcriptional upregulation of the scaffolding protein NEDD9. Thyroid patient tissues and transcriptomic data reveals NEDD9/ALDH1A3 to be co-expressed and co-upregulated in ATC. Compared to bulk ALDH− cells, ALDH+ cells were highly efficient at propagating CIN due to their intrinsic tolerance of both centrosome amplification and micronuclei. ALDH+ cells mitigated the fitness-impairing effects of centrosome amplification by partially inactivating supernumerary centrosomes. Meanwhile, ALDH+ cells also mitigated cell death caused by micronuclei-mediated type 1 interferon secretion by suppressing the expression of the DNA-sensor protein STING. Both mechanisms of CIN-tolerance were lost upon RNAi-mediated NEDD9 silencing. Both in vitro and in vivo, NEDD9-depletion attenuated stemness, CIN, cell/tumor growth, while enhancing paclitaxel effectiveness. Collectively, these findings reveal that ATC progression can involve an ALDH1A3/NEDD9-regulated program linking their stemness to CIN-tolerance that could be leveraged for ATC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ALDH+ ATC cells exhibit stem-like features, asymmetrical division, and harbours higher rate of chromosomal instability.
Fig. 2: NEDD9 is upregulated in ALDH + ATC cells and NEDD9/ALDH1A3 are co-overexpressed in ATC patients.
Fig. 3: ALDH+ATC cells display centrosome asymmetry, which is disrupted by NEDD9-depletion.
Fig. 4: ALDH+ATC cells with centrosome amplification experience milder spindle multipolarity due to NEDD9-mediated centrosome inactivation.
Fig. 5: NEDD9 help supernumerary-centrosome-harbouring ALDH+ cells complete mitosis and increase the rate of CIN.
Fig. 6: NEDD9 upregulation in ALDH+ cells shut down micronuclei-rupture stimulated DNA sensing pathway by limiting STING protein expression.
Fig. 7: shNEDD9-induced STING activation suppresses ALDH+ cell growth independently from shNEDD9-induced spindle multipolarity.
Fig. 8: NEDD9-depletion in ATC xenografts inhibits tumor growth, reduces chromosome missegregation, and enhances the efficacy of paclitaxel.

Similar content being viewed by others

Data availability

All other data are found within the article, Supplementary Files, or are available from authors upon request.

References

  1. Holland AJ, Cleveland DW. Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol. 2009;10:478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    Article  CAS  PubMed  Google Scholar 

  3. Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, et al. Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 2018;173:338–354. e315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen H, He X. The convergent cancer evolution toward a single cellular destination. Mol Biol Evol. 2016;33:4–12.

    Article  CAS  PubMed  Google Scholar 

  5. Bakhoum SF, Landau DA. Chromosomal instability as a driver of tumor heterogeneity and evolution. Cold Spring Harb Perspect Med. 2017;7:a029611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Morel A-P, Ginestier C, Pommier RM, Cabaud O, Ruiz E, Wicinski J, et al. A stemness-related ZEB1–MSRB3 axis governs cellular pliancy and breast cancer genome stability. Nat Med. 2017;23:568.

    Article  CAS  PubMed  Google Scholar 

  7. Zhou W, Yang Y, Gu Z, Wang H, Xia J, Wu X, et al. ALDH1 activity identifies tumor-initiating cells and links to chromosomal instability signatures in multiple myeloma. Leukemia. 2014;28:1155–8.

    Article  CAS  PubMed  Google Scholar 

  8. Wilkens L, Flemming P, Gebel M, Bleck J, Terkamp C, Wingen L, et al. Induction of aneuploidy by increasing chromosomal instability during dedifferentiation of hepatocellular carcinoma. Proc Natl Acad Sci. 2004;101:1309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nigg EA, Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. 2011;13:1154–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yamashita YM, Mahowald AP, Perlin JR, Fuller MT. Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science. 2007;315:518–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yamashita YM, Fuller MT. Asymmetric centrosome behavior and the mechanisms of stem cell division. J Cell Biol. 2008;180:261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ranjan R, Snedeker J, Chen X. Asymmetric centromeres differentially coordinate with mitotic machinery to ensure biased sister chromatid segregation in germline stem cells. Cell Stem Cell. 2019;25:666–681. e665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan JY. A clinical overview of centrosome amplification in human cancers. Int J Biol Sci. 2011;7:1122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lingle WL, Barrett SL, Negron VC, D’Assoro AB, Boeneman K, Liu W, et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci. 2002;99:1978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature. 2009;460:278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Milunović-Jevtić A, Mooney P, Sulerud T, Bisht J, Gatlin J. Centrosomal clustering contributes to chromosomal instability and cancer. Curr Opin Biotechnol. 2016;40:113–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kwon M, Godinho SA, Chandhok NS, Ganem NJ, Azioune A, Thery M, et al. Mechanisms to suppress multipolar divisions in cancer cells with extra centrosomes. Genes Dev. 2008;22:2189–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS. Spindle multipolarity is prevented by centrosomal clustering. Science. 2005;307:127–9.

    Article  CAS  PubMed  Google Scholar 

  19. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mackenzie KJ, Carroll P, Martin C-A, Murina O, Fluteau A, Simpson DJ, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hopfner K-P, Hornung V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nature reviews Molecular cell biology. 2020;21:501–21

  22. Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13:644–60.

    Article  CAS  PubMed  Google Scholar 

  23. Heiden KB, Williamson AJ, Doscas ME, Ye J, Wang Y, Liu D, et al. The sonic hedgehog signaling pathway maintains the cancer stem cell self-renewal of anaplastic thyroid cancer by inducing snail expression. J Clin Endocrinol Metab. 2014;99:E2178–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Todaro M, Iovino F, Eterno V, Cammareri P, Gambara G, Espina V, et al. Tumorigenic and metastatic activity of human thyroid cancer stem cells. Cancer Res. 2010;70:8874–85.

    Article  CAS  PubMed  Google Scholar 

  25. Visciano C, Liotti F, Prevete N, Franco R, Collina F, De Paulis A, et al. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8–Akt–Slug pathway. Oncogene. 2015;34:5175–86.

    Article  CAS  PubMed  Google Scholar 

  26. Lin R-Y. Thyroid cancer stem cells. Nat Rev Endocrinol. 2011;7:609–16.

    Article  CAS  PubMed  Google Scholar 

  27. Shagisultanova E, Gaponova AV, Gabbasov R, Nicolas E, Golemis EA. Preclinical and clinical studies of the NEDD9 scaffold protein in cancer and other diseases. Gene. 2015;567:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang Z, Shen M, Lu P, Li X, Zhu S, Yue S. NEDD9 may regulate hepatocellular carcinoma cell metastasis by promoting epithelial-mesenchymal-transition and stemness via repressing Smad7. Oncotarget. 2017;8:1714.

    Article  PubMed  Google Scholar 

  29. Gabbasov R, Xiao F, Howe CG, Bickel LE, O’Brien SW, Benrubi D, et al. NEDD9 promotes oncogenic signaling, a stem/mesenchymal gene signature, and aggressive ovarian cancer growth in mice. Oncogene. 2018;37:4854–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA. HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell. 2007;129:1351–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim M, Gans JD, Nogueira C, Wang A, Paik J-H, Feng B, et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell. 2006;125:1269–81.

    Article  CAS  PubMed  Google Scholar 

  32. Feng Y, Wang Y, Wang Z, Fang Z, Li F, Gao Y, et al. The CRTC1-NEDD9 signaling axis mediates lung cancer progression caused by LKB1 loss. Cancer Res. 2012;72:6502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin Y, Li F, Zheng C, Wang Y, Fang Z, Guo C, et al. NEDD9 promotes lung cancer metastasis through epithelial–mesenchymal transition. Int J cancer. 2014;134:2294–304.

    Article  CAS  PubMed  Google Scholar 

  34. Ahn J, Sanz-Moreno V, Marshall CJ. The metastasis gene NEDD9 product acts through integrin β3 and Src to promote mesenchymal motility and inhibit amoeboid motility. J Cell Sci. 2012;125:1814–26.

    CAS  PubMed  Google Scholar 

  35. Singh MK, Cowell L, Seo S, O’Neill GM, Golemis EA. Molecular basis for HEF1/NEDD9/Cas-L action as a multifunctional co-ordinator of invasion, apoptosis and cell cycle. Cell Biochem Biophys. 2007;48:54–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pugacheva EN, Golemis EA. The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol. 2005;7:937–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Izumchenko E, Singh MK, Plotnikova OV, Tikhmyanova N, Little JL, Serebriiskii IG, et al. NEDD9 promotes oncogenic signaling in mammary tumor development. Cancer Res. 2009;69:7198–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marcato P, Dean CA, Giacomantonio CA, Lee PW. Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle. 2011;10:1378–84.

    Article  CAS  PubMed  Google Scholar 

  39. Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M, et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29:32–45.

    Article  CAS  PubMed  Google Scholar 

  40. Yamashita YM, Jones DL, Fuller MT. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science. 2003;301:1547–50.

    Article  CAS  PubMed  Google Scholar 

  41. Cosenza MR, Cazzola A, Rossberg A, Schieber NL, Konotop G, Bausch E, et al. Asymmetric centriole numbers at spindle poles cause chromosome missegregation in cancer. Cell Rep. 2017;20:1906–20.

    Article  CAS  PubMed  Google Scholar 

  42. Morrison SJ, Kimble J. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 2006;441:1068–74.

    Article  CAS  PubMed  Google Scholar 

  43. Nigg EA, Stearns T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. 2011;13:1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagayama Y, Shimamura M, Mitsutake N. Cancer stem cells in the thyroid. Front Endocrinol. 2016;7:20.

    Article  Google Scholar 

  45. Shimamura M, Nagayama Y, Matsuse M, Yamashita S, Mitsutake N. Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines. Endocr J. 2014;61:481–90.

    Article  CAS  PubMed  Google Scholar 

  46. Shiraiwa K, Matsuse M, Nakazawa Y, Ogi T, Suzuki K, Saenko V, et al. JAK/STAT3 and NF-κB signaling pathways regulate cancer stem-cell properties in anaplastic. Thyroid Cancer Cells Thyroid. 2019;29:674–82.

    CAS  PubMed  Google Scholar 

  47. Li W, Reeb AN, Sewell WA, Elhomsy G, Lin R-Y. Phenotypic characterization of metastatic anaplastic thyroid cancer stem cells. PloS ONE. 2013;8:e65095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bajar BT, Lam AJ, Badiee RK, Oh Y-H, Chu J, Zhou XX, et al. Fluorescent indicators for simultaneous reporting of all four cell cycle phases. Nat Methods. 2016;13:993–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reeb N, Reigh-Yi L. Microarray analysis identifies a unique molecular signature of human thyroid cancer stem cells. Thyroid Disord Ther. 2015;4:2.

    Google Scholar 

  50. Binder JX, Pletscher-Frankild S, Tsafou K, Stolte C, O’Donoghue SI, Schneider R, et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database. 2014;2014:bau012.

  51. Knutson D, Clagett-Dame M. atRA Regulation of NEDD9, a gene involved in neurite outgrowth and cell adhesion. Arch Biochem Biophys. 2008;477:163–74.

    Article  CAS  PubMed  Google Scholar 

  52. Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.

    Article  PubMed Central  CAS  Google Scholar 

  53. Ganly I, Ibrahimpasic T, Rivera M, Nixon I, Palmer F, Patel SG, et al. Prognostic implications of papillary thyroid carcinoma with tall-cell features. Thyroid. 2014;24:662–70.

    Article  CAS  PubMed  Google Scholar 

  54. Johnson TL, Lloyd RV, Thompson NW, Beierwaltes WH, Sisson JC. Prognostic implications of the tall cell variant of papillary thyroid carcinoma. Am J Surgical Pathol. 1988;12:22–7.

    Article  CAS  Google Scholar 

  55. Mariappan A, Soni K, Schorpp K, Zhao F, Minakar A, Zheng X, et al. Inhibition of CPAP–tubulin interaction prevents proliferation of centrosome‐amplified cancer cells. EMBO J. 2019;38:e99876.

    Article  PubMed  CAS  Google Scholar 

  56. Shah JV, Cleveland DW. Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell. 2000;103:997–1000.

    Article  CAS  PubMed  Google Scholar 

  57. Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun C, et al. Attenuation of c GAS‐STING signaling is mediated by a p62/SQSTM 1‐dependent autophagy pathway activated by TBK1. EMBO J. 2018;37:e97858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zierhut C, Yamaguchi N, Paredes M, Luo J-D, Carroll T, Funabiki H. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell. 2019;178:302–315. e323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun. 2020;11:1–16.

    Article  CAS  Google Scholar 

  60. Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553:467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hatch EM, Fischer AH, Deerinck TJ, Hetzer MW. Catastrophic nuclear envelope collapse in cancer cell micronuclei. Cell. 2013;154:47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458:509–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paludan SR, Reinert LS, Hornung V. DNA-stimulated cell death: implications for host defence, inflammatory diseases and cancer. Nat Rev Immunol. 2019;19:141–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, et al. Cancer cell–autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–9.

    Article  CAS  PubMed  Google Scholar 

  65. Zhu X, Park S, Lee WK, Cheng S-y. Potentiated anti-tumor effects of BETi by MEKi in anaplastic thyroid cancer. Endocr-Relat Cancer. 2019;26:739–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ Jr, et al. 2021 American thyroid association guidelines for management of patients with anaplastic thyroid cancer: American thyroid association anaplastic thyroid cancer guidelines task force. Thyroid. 2021;31:337–86.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, et al. Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res. 2009;69:1302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pillai S, Nguyen J, Johnson J, Haura E, Coppola D, Chellappan S. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis. Nat Commun. 2015;6:1–14.

    Article  Google Scholar 

  69. Gentili M, Lahaye X, Nadalin F, Nader GP, Lombardi EP, Herve S, et al. The N-terminal domain of cGAS determines preferential association with centromeric DNA and innate immune activation in the nucleus. Cell Rep. 2019;26:2377–2393. e2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Miranda A, Hamilton PT, Zhang AW, Pattnaik S, Becht E, Mezheyeuski A, et al. Cancer stemness, intratumoral heterogeneity, and immune response across cancers. Proc Natl Acad Sci. 2019;116:9020–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell. 2019;177:1172–1186. e1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Isham CR, Bossou AR, Negron V, Fisher KE, Kumar R, Marlow L, et al. Pazopanib enhances paclitaxel-induced mitotic catastrophe in anaplastic thyroid cancer. Sci Transl Med. 2013;5:166ra163–166ra163.

    Article  CAS  Google Scholar 

  73. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168:613–28.

    Article  CAS  PubMed  Google Scholar 

  74. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1–pl1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer discovery. AACR, 2012;2:401–4.

Download references

Acknowledgements

We thank Dr. John Copland for providing the cell lines THJ-11T and THJ-16T, and Dr. Mark Trifiro for providing the cell lines 8505c, TPC, and BCPAP. We thank Dr. Long Yang for the NEDD9-KO construct. Representative schematics in Fig. 5a and Fig. 6k weres created using Biorender.com.

Funding

This study was supported by the Canadian Institutes of Health Research (Grant# 178116) and in part by McGill Interdisciplinary Initiative in Infection and Immunity (MI4); GB Morand was supported by the Swiss Cancer League (BIL KFS-3002-08-2012).

Author information

Authors and Affiliations

Authors

Contributions

HY, KB and MA conceived and designed the experiments and wrote the manuscript. HY performed all the ATC cell-based experiments and generated the stable inducible knockdown cell lines for in vivo studies. GM and JS performed in vivo experiments. SDS and AS supervised the immunohistochemistry studies.

Corresponding author

Correspondence to Moulay A. Alaoui-Jamali.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H.G., Bijian, K., da Silva, S.D. et al. NEDD9 links anaplastic thyroid cancer stemness to chromosomal instability through integrated centrosome asymmetry and DNA sensing regulation. Oncogene 41, 2984–2999 (2022). https://doi.org/10.1038/s41388-022-02317-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02317-7

Search

Quick links