Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loss of deubiquitylase USP2 triggers development of glioblastoma via TGF-β signaling

Abstract

Glioblastoma (GBM) is the most aggressive primary brain tumor as one of the deadliest cancers. The TGF-β signaling acts as an oncogenic factor in GBM, and plays vital roles in development of GBM. SMAD7 is a major inhibitor of TGF-β signaling, while the deubiquitination of SMAD7 has been poorly studied in GBM. Here, we found USP2 as a new prominent candidate that could regulate SMAD7 stability. USP2 was lost in GBM, leading to the poor prognosis in patients. Moreover, aberrant DNA methylation mediated by DNMT3A induced the low expression of USP2 in GBM. USP2 depletion induced TGF-β signaling and progression of GBM. In contrast, overexpressed USP2 suppressed TGF-β signaling and GBM development. Specifically, USP2 interacted with SMAD7 and prevented SMAD7 ubiquitination. USP2 directly cleaved Lys27- and Lys48-linked poly-ubiquitin chains of SMAD7, and Lys27-linked poly-ubiquitin chains of SMAD7 K185 mediated the recruitment of SMAD7 to HERC3, which regulated Lys63-linked poly-ubiquitination of SMAD7. Moreover, we demonstrated that the DNMT3A inhibitor SGI-1027 induced USP2, suppressed TGF-β signaling and GBM development. Thus, USP2 repressed development of GBM by inhibition TGF-β signaling pathway via the deubiquitination of SMAD7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNMT3A-mediated aberrant DNA methylation induced low expression of USP2 in GBM.
Fig. 2: USP2 suppressed TGF-β signaling and development of GBM.
Fig. 3: USP2 interacted with SMAD7 and regulated SMAD7 stability.
Fig. 4: USP2 deubiquitinated SMAD7 and directly cleaved Lys 27-, Lys 48-polyubiquitin chain.
Fig. 5: USP2 cleaved K27-poly-ubiquitin chain on SMAD7 K185 and further reduced the recruitment of SMAD7 to HERC3.
Fig. 6: Pharmacological increasing USP2 suppressed TGF-β signaling and development of GBM.
Fig. 7: USP2 positive correlated with SMAD7 protein in human specimens.

Similar content being viewed by others

References

  1. Tu Y, Chen Z, Zhao P, Sun G, Bao Z, Chao H, et al. Smoothened promotes glioblastoma radiation resistance via activating USP3-mediated claspin deubiquitination. Clin Cancer Res. 2020;26:1749–62.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  3. Dixit D, Prager BC, Gimple RC, Poh HX, Wang Y, Wu Q, et al. The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov. 2021;11:480–99.

    Article  CAS  PubMed  Google Scholar 

  4. Jiang T, Nam DH, Ram Z, Poon WS, Wang J, Boldbaatar D, et al. Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2021;499:60–72.

    Article  CAS  PubMed  Google Scholar 

  5. Sanai N, Li J, Boerner J, Stark K, Wu J, Kim S, et al. Phase 0 trial of AZD1775 in first-recurrence glioblastoma patients. Clin Cancer Res. 2018;24:3820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Anido J, Saez-Borderias A, Gonzalez-Junca A, Rodon L, Folch G, Carmona MA, et al. TGF-beta receptor inhibitors target the CD44(high)/Id1(high) glioma-initiating cell population in human glioblastoma. Cancer Cell. 2010;18:655–68.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Q, Xiao M, Gu S, Xu Y, Liu T, Li H, et al. ALK phosphorylates SMAD4 on tyrosine to disable TGF-beta tumour suppressor functions. Nat Cell Biol. 2019;21:179–89.

    Article  CAS  PubMed  Google Scholar 

  8. Song B, Park SH, Zhao JC, Fong KW, Li S, Lee Y, et al. Targeting FOXA1-mediated repression of TGF-beta signaling suppresses castration-resistant prostate cancer progression. J Clin Investig. 2019;129:569–82.

    Article  PubMed  Google Scholar 

  9. Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389:631–5.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Fan Y, Xie F, Zhou H, Jin K, Shao L, et al. Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun. 2017;8:2116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin. 2009;41:263–72.

    Article  CAS  PubMed  Google Scholar 

  12. Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL, et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell. 2007;130:651–62.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang S, Fei T, Zhang L, Zhang R, Chen F, Ning Y, et al. Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol. 2007;27:4488–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qu Q, Mao Y, Xiao G, Fei X, Wang J, Zhang Y, et al. USP2 promotes cell migration and invasion in triple negative breast cancer cell lines. Tumour Biol. 2015;36:5415–23.

    Article  CAS  PubMed  Google Scholar 

  15. He J, Lee HJ, Saha S, Ruan D, Guo H, Chan CH. Inhibition of USP2 eliminates cancer stem cells and enhances TNBC responsiveness to chemotherapy. Cell Death Dis. 2019;10:285.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang J, Liu S, Li Q, Shi Y, Wu Y, Liu F, et al. The deubiquitylase USP2 maintains ErbB2 abundance via counteracting endocytic degradation and represents a therapeutic target in ErbB2-positive breast cancer. Cell Death Differ. 2020;27:2710–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Niederlander C, Walsh JJ, Episkopou V, Jones CM. Arkadia enhances nodal-related signalling to induce mesendoderm. Nature. 2001;410:830–4.

    Article  CAS  PubMed  Google Scholar 

  18. Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, et al. Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7. EMBO J. 2003;22:6458–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang Y, Reissig S, Glasmacher E, Regen T, Wanke F, Nikolaev A, et al. Alternative splice forms of CYLD mediate ubiquitination of SMAD7 to prevent tgfb signaling and promote colitis. Gastroenterology. 2019;156:692–707. e7

    Article  CAS  PubMed  Google Scholar 

  20. Zhao Y, Thornton AM, Kinney MC, Ma CA, Spinner JJ, Fuss IJ, et al. The deubiquitinase CYLD targets Smad7 protein to regulate transforming growth factor beta (TGF-beta) signaling and the development of regulatory T cells. J Biol Chem. 2011;286:40520–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2018;33:152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, et al. Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell. 2013;24:331–46.

    Article  CAS  PubMed  Google Scholar 

  23. Heyn H, Esteller M. DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet. 2012;13:679–92.

    Article  CAS  PubMed  Google Scholar 

  24. Wang Q, Cai J, Fang C, Yang C, Zhou J, Tan Y, et al. Mesenchymal glioblastoma constitutes a major ceRNA signature in the TGF-beta pathway. Theranostics. 2018;8:4733–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Li J, Chen L, Qi S, Yu S, Weng Z, et al. HERC3-mediated SMAD7 ubiquitination degradation promotes autophagy-induced EMT and chemoresistance in glioblastoma. Clin Cancer Res. 2019;25:3602–16.

    Article  CAS  PubMed  Google Scholar 

  26. Yin Q, Han T, Fang B, Zhang G, Zhang C, Roberts ER, et al. K27-linked ubiquitination of BRAF by ITCH engages cytokine response to maintain MEK-ERK signaling. Nat Commun. 2019;10:1870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wu X, Lei C, Xia T, Zhong X, Yang Q, Shu HB. Regulation of TRIF-mediated innate immune response by K27-linked polyubiquitination and deubiquitination. Nat Commun. 2019;10:4115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Chai RC, Chang YZ, Chang X, Pang B, An SY, Zhang KN, et al. YTHDF2 facilitates UBXN1 mRNA decay by recognizing METTL3-mediated m(6)A modification to activate NF-kappaB and promote the malignant progression of glioma. J Hematol Oncol. 2021;14:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bruna A, Darken RS, Rojo F, Ocana A, Penuelas S, Arias A, et al. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Cancer Cell. 2007;11:147–60.

    Article  CAS  PubMed  Google Scholar 

  30. Tong L, Shen S, Huang Q, Fu J, Wang T, Pan L, et al. Proteasome-dependent degradation of Smad7 is critical for lung cancer metastasis. Cell Death Differ. 2020;27:1795–806.

    Article  CAS  PubMed  Google Scholar 

  31. Park SH, Jung EH, Kim GY, Kim BC, Lim JH, Woo CH. Itch E3 ubiquitin ligase positively regulates TGF-beta signaling to EMT via Smad7 ubiquitination. Mol Cells. 2015;38:20–5.

    Article  CAS  PubMed  Google Scholar 

  32. Izzi L, Attisano L. Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene. 2004;23:2071–8.

    Article  CAS  PubMed  Google Scholar 

  33. De Boeck M, ten Dijke P. Key role for ubiquitin protein modification in TGFbeta signal transduction. UPS J Med Sci. 2012;117:153–65.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Imamura T, Oshima Y, Hikita A. Regulation of TGF-beta family signalling by ubiquitination and deubiquitination. J Biochem. 2013;154:481–9.

    Article  CAS  PubMed  Google Scholar 

  35. Song Y, Jiang Y, Tao D, Wang Z, Wang R, Wang M, et al. NFAT2-HDAC1 signaling contributes to the malignant phenotype of glioblastoma. Neuro Oncol. 2020;22:46–57.

    Article  PubMed  CAS  Google Scholar 

  36. Behnan J, Finocchiaro G, Hanna G. The landscape of the mesenchymal signature in brain tumours. Brain. 2019;142:847–66.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  CAS  PubMed  Google Scholar 

  38. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  39. Xu TH, Liu M, Zhou XE, Liang G, Zhao G, Xu HE, et al. Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B. Nature. 2020;586:151–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gu X, Gong H, Shen L, Gu Q. MicroRNA-129-5p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting DNMT3A. Am J Transl Res. 2018;10:2834–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kit Leng Lui S, Iyengar PV, Jaynes P, Isa Z, Pang B, Tan TZ, et al. USP26 regulates TGF-beta signaling by deubiquitinating and stabilizing SMAD7. EMBO Rep. 2017;18:797–808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the National Natural Science Foundation of China (82120108018 and 81972153), China Postdoctoral Science Foundation (2021M701495), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, Grant No. JX10231803), and Gusu School, Nanjing Medical University (GSKY202201010).

Author information

Authors and Affiliations

Authors

Contributions

JJ designed the experiments. YT, LX, and JX performed the experiments. ZB, WT, YY, and GS analyzed the data. ZM and HC collected samples. YY and NL supervised the study. YT wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jing Ji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y., Xu, L., Xu, J. et al. Loss of deubiquitylase USP2 triggers development of glioblastoma via TGF-β signaling. Oncogene 41, 2597–2608 (2022). https://doi.org/10.1038/s41388-022-02275-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02275-0

This article is cited by

Search

Quick links