Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MicroRNA-22 represses glioma development via activation of macrophage-mediated innate and adaptive immune responses

A Correction to this article was published on 31 March 2022

This article has been updated

Abstract

Macrophage-mediated tumor cell phagocytosis and subsequent neoantigen presentation are critical for generating anti-tumor immunity. This study aimed to uncover the potential clinical value and molecular mechanisms of miRNA-22 (miR-22) in tumor cell phagocytosis via macrophages and more efficient T cell priming. We found that miR-22 expression was markedly downregulated in primary macrophages from glioma tissue samples compared to adjacent tissues. miR-22-overexpressing macrophages inhibited glioma cell proliferation and migration, respectively. miR-22 upregulation stimulated the phagocytic ability of macrophages, enhanced tumor cell phagocytosis, antigen presentation, and efficient T cell priming. Additionally, our data revealed that miR-22-overexpressing macrophages inhibited glioma formation in vivo, HDAC6 was a target, and NF-κB signaling was a pathway closely associated with miR-22 in tumor-associated macrophages (TAMs) of glioma. Our findings revealed the essential roles of miR-22 in tumor cell phagocytosis by macrophages and more efficient T cell priming, facilitating further research on phagocytic regulation to enhance the response to tumor immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: miR-22 is downregulated in glioma tissues, as well as in tumor-infiltrating macrophages.
Fig. 2: miR-22-overexpressing macrophages indirectly inhibits glioma cells proliferation and migration.
Fig. 3: miR-22 enhances the phagocytic ability of macrophages.
Fig. 4: miR-22 increases the antigen presentation and CD8+ T cell priming in a NF-κB-dependent manner.
Fig. 5: miR-22-overexpressing macrophages inhibit glioma formation in vivo.
Fig. 6: HDAC6 is a target of miR-22 and HDAC6 deficiency mimics miR-22 overexpression-mediated anti-tumor effect in macrophages.
Fig. 7: Outline diagram of the anti-tumor effects of miR-22/HDAC6/NF-κB axis in macrophage of glioma.

Similar content being viewed by others

Change history

References

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131:803–20.

    Article  PubMed  Google Scholar 

  2. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359:492–507.

    Article  CAS  PubMed  Google Scholar 

  3. Sin WC, Aftab Q, Bechberger JF, Leung JH, Chen H, Naus CC. Astrocytes promote glioma invasion via the gap junction protein connexin 43. Oncogene. 2016;35:1504–16.

    Article  CAS  PubMed  Google Scholar 

  4. Wong ML, Prawira A, Kaye AH, Hovens CM. Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci. 2009;16:1119–30.

    Article  CAS  PubMed  Google Scholar 

  5. Domingues P, Gonzalez-Tablas M, Otero A, Pascual D, Miranda D, Ruiz L, et al. Tumor infiltrating immune cells in gliomas and meningiomas. Brain Behav Immun. 2016;53:1–15.

    Article  CAS  PubMed  Google Scholar 

  6. Guerriero JL. Macrophages: their untold story in T cell activation and function. Int Rev Cell Mol Biol. 2019;342:73–93.

    Article  CAS  PubMed  Google Scholar 

  7. Josephs DH, Bax HJ, Karagiannis SN. Tumour-associated macrophage polarisation and re-education with immunotherapy. Front Biosci (Elite Ed). 2015;7:293–308.

    Google Scholar 

  8. Salmi M. Macrophages and cancer. Duodecim. 2017;133:829–37.

    PubMed  Google Scholar 

  9. Hussain SF, Yang D, Suki D, Aldape K, Grimm E, Heimberger AB. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol. 2006;8:261–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hambardzumyan D, Gutmann DH, Kettenmann H. The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci. 2016;19:20–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  12. Guo Y, Hong W, Wang X, Zhang P, Korner H, Tu J, et al. MicroRNAs in microglia: how do MicroRNAs affect activation, inflammation, polarization of microglia and mediate the interaction between microglia and glioma? Front Mol Neurosci. 2019;12:125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li S, Liang X, Ma L, Shen L, Li T, Zheng L, et al. MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene. 2018;37:884–96.

    Article  CAS  PubMed  Google Scholar 

  14. Wongjampa W, Ekalaksananan T, Chopjitt P, Chuerduangphui J, Kleebkaow P, Patarapadungkit N, et al. Suppression of miR-22, a tumor suppressor in cervical cancer, by human papillomavirus 16 E6 via a p53/miR-22/HDAC6 pathway. PLoS One. 2018;13:e0206644.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zhang X, Li Y, Wang D, Wei X. miR-22 suppresses tumorigenesis and improves radiosensitivity of breast cancer cells by targeting Sirt1. Biol Res. 2017;50:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zhang K, Li XY, Wang ZM, Han ZF, Zhao YH. MiR-22 inhibits lung cancer cell EMT and invasion through targeting Snail. Eur Rev Med Pharm Sci. 2017;21:3598–604.

    CAS  Google Scholar 

  17. Chen H, Lu Q, Fei X, Shen L, Jiang D, Dai D. miR-22 inhibits the proliferation, motility, and invasion of human glioblastoma cells by directly targeting SIRT1. Tumour Biol. 2016;37:6761–8.

    Article  CAS  PubMed  Google Scholar 

  18. Wan S, Ashraf U, Ye J, Duan X, Zohaib A, Wang W, et al. MicroRNA-22 negatively regulates poly(I:C)-triggered type I interferon and inflammatory cytokine production via targeting mitochondrial antiviral signaling protein (MAVS). Oncotarget. 2016;7:76667–83.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lu W, You R, Yuan X, Yang T, Samuel EL, Marcano DC, et al. The microRNA miR-22 inhibits the histone deacetylase HDAC4 to promote T(H)17 cell-dependent emphysema. Nat Immunol. 2015;16:1185–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pei XF, Cao LL, Huang F, Qiao X, Yu J, Ye H, et al. Role of miR-22 in intestinal mucosa tissues and peripheral blood CD4+ T cells of inflammatory bowel disease. Pathol Res Pract. 2018;214:1095–104.

    Article  CAS  PubMed  Google Scholar 

  21. Shen C, Chen MT, Zhang XH, Yin XL, Ning HM, Su R, et al. The PU.1-modulated MicroRNA-22 is a regulator of monocyte/macrophage differentiation and acute myeloid leukemia. PLoS Genet. 2016;12:e1006259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang L, Li HH, Yuan M, Li D, Wang GY. Exosomal miR-22-3p derived from peritoneal macrophages enhances proliferation, migration, and invasion of ectopic endometrial stromal cells through regulation of the SIRT1/NF-kappaB signaling pathway. Eur Rev Med Pharmacol Sci. 2020;24:571–80.

    CAS  PubMed  Google Scholar 

  23. Kramer OH, Mahboobi S, Sellmer A. Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharm Sci. 2014;35:501–9.

    Article  PubMed  CAS  Google Scholar 

  24. Seidel C, Schnekenburger M, Dicato M, Diederich M. Histone deacetylase 6 in health and disease. Epigenomics. 2015;7:103–18.

    Article  CAS  PubMed  Google Scholar 

  25. Park SJ, Kim JK, Bae HJ, Eun JW, Shen Q, Kim HS, et al. HDAC6 sustains growth stimulation by prolonging the activation of EGF receptor through the inhibition of rabaptin-5-mediated early endosome fusion in gastric cancer. Cancer Lett. 2014;354:97–106.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Hu P, Tang F, Xie C. HDAC6-mediated EGFR stabilization and activation restrict cell response to sorafenib in non-small cell lung cancer cells. Med Oncol. 2016;33:50.

    Article  PubMed  CAS  Google Scholar 

  27. Medler TR, Craig JM, Fiorillo AA, Feeney YB, Harrell JC, Clevenger CV. HDAC6 deacetylates HMGN2 to regulate Stat5a activity and breast cancer growth. Mol Cancer Res. 2016;14:994–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang W, Liu Y, Gao R, Yu H, Sun T. HDAC6 inhibition induces glioma stem cells differentiation and enhances cellular radiation sensitivity through the SHH/Gli1 signaling pathway. Cancer Lett. 2018;415:164–76.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Z, Hu P, Tang F, Lian H, Chen X, Zhang Y, et al. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma. Cancer Lett. 2016;379:134–42.

    Article  CAS  PubMed  Google Scholar 

  30. Kim GW, Lee DH, Yeon SK, Jeon YH, Yoo J, Lee SW, et al. Temozolomide-resistant glioblastoma depends on HDAC6 activity through regulation of DNA mismatch repair. Anticancer Res. 2019;39:6731–41.

    Article  CAS  PubMed  Google Scholar 

  31. Yan B, Xie S, Liu Y, Liu W, Li D, Liu M, et al. Histone deacetylase 6 modulates macrophage infiltration during inflammation. Theranostics. 2018;8:2927–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Knox T, Sahakian E, Banik D, Hadley M, Palmer E, Noonepalle S, et al. Selective HDAC6 inhibitors improve anti-PD-1 immune checkpoint blockade therapy by decreasing the anti-inflammatory phenotype of macrophages and down-regulation of immunosuppressive proteins in tumor cells. Sci Rep. 2019;9:6136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Krutzik SR, Tan B, Li H, Ochoa MT, Liu PT, Sharfstein SE, et al. TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells. Nat Med. 2005;11:653–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pyonteck SM, Akkari L, Schuhmacher AJ, Bowman RL, Sevenich L, Quail DF, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou W, Ke SQ, Huang Z, Flavahan W, Fang X, Paul J, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumour-associated macrophages and promotes malignant growth. Nat Cell Biol. 2015;17:170–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang B, Wang K, Jin T, Xu Q, He Y, Cui B, et al. NCK1-AS1 enhances glioma cell proliferation, radioresistance and chemoresistance via miR-22-3p/IGF1R ceRNA pathway. Biomed Pharmacother. 2020;129:110395.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Tu L, Zhou X, Li B. MicroRNA-22 regulates the proliferation, drug sensitivity and metastasis of human glioma cells by targeting SNAIL1. J BUON. 2020;25:491–6.

    PubMed  Google Scholar 

  38. Hu T, Wang F, Han G. LncRNA PSMB8-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma. Neurosci Lett. 2020;728:134896.

    Article  CAS  PubMed  Google Scholar 

  39. Kurynina AV, Erokhina MV, Makarevich OA, Sysoeva VY, Lepekha LN, Kuznetsov SA, et al. Plasticity of human THP-1 cell phagocytic activity during macrophagic differentiation. Biochem (Mosc). 2018;83:200–14.

    Article  CAS  Google Scholar 

  40. von Roemeling CA, Wang Y, Qie Y, Yuan H, Zhao H, Liu X, et al. Therapeutic modulation of phagocytosis in glioblastoma can activate both innate and adaptive antitumour immunity. Nat Commun. 2020;11:1508.

    Article  CAS  Google Scholar 

  41. Yang X, Zhang X, Fu ML, Weichselbaum RR, Gajewski TF, Guo Y, et al. Targeting the tumor microenvironment with interferon-beta bridges innate and adaptive immune responses. Cancer Cell. 2014;25:37–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lorenzi S, Forloni M, Cifaldi L, Antonucci C, Citti A, Boldrini R, et al. IRF1 and NF-kB restore MHC class I-restricted tumor antigen processing and presentation to cytotoxic T cells in aggressive neuroblastoma. PLoS One. 2012;7:e46928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan GQ, Wang X, Yang F, Yang ML, Zhang GR, Wang GK, et al. MicroRNA-22 promoted osteogenic differentiation of human periodontal ligament stem cells by targeting HDAC6. J Cell Biochem. 2017;118:1653–8.

    Article  CAS  PubMed  Google Scholar 

  44. Huang S, Wang S, Bian C, Yang Z, Zhou H, Zeng Y, et al. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression. Stem Cells Dev. 2012;21:2531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, et al. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res. 2003;9:4247–54.

    CAS  PubMed  Google Scholar 

  46. Chang S, Chen W, Yang J. Another formula for calculating the gene change rate in real-time RT-PCR. Mol Biol Rep. 2009;36:2165–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (31900616, 81673444, 82003795), The project of improvement of the scientific ability of Anhui Medical University (2020xkjT009), Natural Science Foundation of Anhui Province for young scholars (1908085QH379) and The Open Fund of Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, P.R. China, Anhui Medical University (KFJJ-2021-01).

Author information

Authors and Affiliations

Authors

Contributions

JT and YF performed the experiments and drafted the manuscript. DH, XT, ZX, HJ, XW, WH, and WW revised the manuscript.

Corresponding authors

Correspondence to Wenming Hong or Wei Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Patients with glioma were recruited from the First Affiliated Hospital of Anhui Medical University, approved by the Medicine Research Ethics Committee of Anhui Medical University. All glioma patients gave informed consent to relevant experimental protocols. All animal experiments were performed in accordance with the guidelines of the Institutional Laboratory Animal Care and Use Committee, Anhui Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, J., Fang, Y., Han, D. et al. MicroRNA-22 represses glioma development via activation of macrophage-mediated innate and adaptive immune responses. Oncogene 41, 2444–2457 (2022). https://doi.org/10.1038/s41388-022-02236-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02236-7

This article is cited by

Search

Quick links