Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oncogenesis induced by combined Phf6 and Idh2 mutations through increased oncometabolites and impaired DNA repair

Abstract

The pathogenesis of acute leukemia involves interaction among genetic alterations. Mutations of IDH1/2 and PHF6 are common and co-exist in some patients of hematopoietic malignancies, but their cooperative effects remain unexplored. In this study, we addressed the question by characterizing the hematopoietic phenotypes of mice harboring neither, Phf6 knockout, Idh2 R172K, or combined mutations. We found that the combined Phf6KOIdh2R172K mice showed biased hematopoietic differentiation toward myeloid lineages and reduced long-term hematopoietic stem cells. They rapidly developed neoplasms of myeloid and lymphoid lineages, with much shorter survival compared with single mutated and wild-type mice. The marrow and spleen cells of the combined mutated mice produced a drastically increased amount of 2-hydroxyglutarate compared with mice harboring Idh2 R172K. Single-cell RNA sequencing revealed distinct patterns of transcriptome of the hematopoietic stem/progenitor cells from the combined mutated mice, including aberrant expression of metabolic enzymes, increased expression of several oncogenes, and impairment of DNA repairs, as confirmed by the enhanced γH2AX expression in the marrow and spleen cells. We conclude that Idh2 and Phf6 mutations are synergistic in leukemogenesis, at least through overproduction of 2-hydroxyglutarate and impairment of DNA repairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Combined Phf6KO and Idh2R172K resulted in chronic myelomonocytic leukemia-like phenotypes with marked cytopenia in vivo at 8–12 weeks.
Fig. 2: Combined Phf6KO and Idh2R172K mutations altered hematopoietic differentiation and reduced LT-HSC at 8–12 weeks.
Fig. 3: Early onset of hematopoietic neoplasms in the Phf6KOIdh2R172K mice.
Fig. 4: Drastic elevation of oncometabolites 2-HG resulted from higher expression of mutant Idh2R172K mRNA and protein in the Phf6KOIdh2R172K mice.
Fig. 5: Single-cell transcriptomic profiling of mice from four genotypes revealed altered hematopoiesis and expression of metabolic enzymes.
Fig. 6: Distinct transcriptional pattern of the HSC/MPP cluster in the Phf6KOIdh2R172K mice, compared with WT mice.
Fig. 7: Increased γH2AX in the young Phf6KOIdh2R172K mice.

Similar content being viewed by others

References

  1. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci USA. 2014;111:2548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holmfeldt L, Mullighan CG. PHF6 mutations in T-lineage acute lymphoblastic leukemia. Pediatr Blood Cancer. 2010;55:595–6.

    Article  PubMed  Google Scholar 

  4. Wang Q, Qiu H, Jiang H, Wu L, Dong S, Pan J, et al. Mutations of PHF6 are associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214 in T-cell acute lymphoblastic leukemia. Haematologica. 2011;96:1808–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Vlierberghe P, Palomero T, Khiabanian H, Van der Meulen J, Castillo M, Van Roy N, et al. PHF6 mutations in T-cell acute lymphoblastic leukemia. Nat Genet. 2010;42:338–42.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Van Vlierberghe P, Patel J, Abdel-Wahab O, Lobry C, Hedvat CV, Balbin M, et al. PHF6 mutations in adult acute myeloid leukemia. Leukemia. 2011;25:130–4.

    Article  PubMed  Google Scholar 

  7. de Rooij JD, van den Heuvel-Eibrink MM, van de Rijdt NK, Verboon LJ, de Haas V, Trka J, et al. PHF6 mutations in paediatric acute myeloid leukaemia. Br J Haematol. 2016;175:967–71.

    Article  PubMed  Google Scholar 

  8. Mori T, Nagata Y, Makishima H, Sanada M, Shiozawa Y, Kon A, et al. Somatic PHF6 mutations in 1760 cases with various myeloid neoplasms. Leukemia. 2016;30:2270–3.

    Article  CAS  PubMed  Google Scholar 

  9. Patel JP, Gonen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366:1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wendorff AA, Quinn SA, Rashkovan M, Madubata CJ, Ambesi-Impiombato A, Litzow MR, et al. Phf6 loss enhances HSC self-renewal driving tumor initiation and leukemia stem cell activity in T-ALL. Cancer Discov. 2019;9:436–51.

    Article  CAS  PubMed  Google Scholar 

  11. Miyagi S, Sroczynska P, Kato Y, Nakajima-Takagi Y, Oshima M, Rizq O, et al. The chromatin-binding protein Phf6 restricts the self-renewal of hematopoietic stem cells. Blood. 2019;133:2495–506.

    Article  CAS  PubMed  Google Scholar 

  12. Hsu YC, Chen TC, Lin CC, Yuan CT, Hsu CL, Hou HA, et al. Phf6-null hematopoietic stem cells have enhanced self-renewal capacity and oncogenic potentials. Blood Adv. 2019;3:2355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McRae HM, Garnham AL, Hu Y, Witkowski MT, Corbett MA, Dixon MP, et al. PHF6 regulates hematopoietic stem and progenitor cells and its loss synergizes with expression of TLX3 to cause leukemia. Blood. 2019;133:1729–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316:1160–6.

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Leung JW, Gong Z, Feng L, Shi X, Chen J. PHF6 regulates cell cycle progression by suppressing ribosomal RNA synthesis. J Biol Chem. 2013;288:3174–83.

    Article  CAS  PubMed  Google Scholar 

  16. Warmerdam DO, Alonso-de Vega I, Wiegant WW, van den Broek B, Rother MB, Wolthuis RM, et al. PHF6 promotes non-homologous end joining and G2 checkpoint recovery. EMBO Rep. 2020;21:e48460.

    Article  CAS  PubMed  Google Scholar 

  17. Lemonnier F, Cairns RA, Inoue S, Li WY, Dupuy A, Broutin S, et al. The IDH2 R172K mutation associated with angioimmunoblastic T-cell lymphoma produces 2HG in T cells and impacts lymphoid development. Proc Natl Acad Sci USA. 2016;113:15084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science. 2009;324:261–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S, et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483:484–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell. 2011;19:17–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9:eaal2463.

  24. Mallette FA, Mattiroli F, Cui G, Young LC, Hendzel MJ, Mer G, et al. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J. 2012;31:1865–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Molenaar RJ, Maciejewski JP, Wilmink JW, van Noorden CJF. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene. 2018;37:1949–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang P, Wu J, Ma S, Zhang L, Yao J, Hoadley KA, et al. Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes and sensitizes IDH mutant cells to alkylating agents. Cell Rep. 2015;13:2353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong WJ, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 2015;21:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen C, Liu Y, Lu C, Cross JR, Morris JPT, Shroff AS, et al. Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev. 2013;27:1974–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Desai P, Mencia-Trinchant N, Savenkov O, Simon MS, Cheang G, Lee S, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med. 2018;24:1015–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Abelson S, Collord G, Ng SWK, Weissbrod O, Mendelson Cohen N, Niemeyer E, et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature. 2018;559:400–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sasaki M, Knobbe CB, Munger JC, Lind EF, Brenner D, Brustle A, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature. 2012;488:656–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Inoue S, Li WY, Tseng A, Beerman I, Elia AJ, Bendall SC, et al. Mutant IDH1 downregulates ATM and alters DNA repair and sensitivity to DNA damage independent of TET2. Cancer Cell. 2016;30:337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, Shepherd M, Laurenti E, et al. A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation. Blood. 2016;128:e20–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Notta F, Zandi S, Takayama N, Dobson S, Gan OI, Wilson G, et al. Distinct routes of lineage development reshape the human blood hierarchy across ontogeny. Science. 2016;351:aab2116.

    Article  PubMed  Google Scholar 

  36. Dahlin JS, Hamey FK, Pijuan-Sala B, Shepherd M, Lau WWY, Nestorowa S, et al. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood. 2018;131:e1–e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ye D, Guan KL, Xiong Y. Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. Trends Cancer. 2018;4:151–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dekker LJM, Wu S, Jurriëns C, Mustafa DAN, Grevers F, Burgers PC, et al. Metabolic changes related to the IDH1 mutation in gliomas preserve TCA-cycle activity: An investigation at the protein level. FASEB J. 2020;34:3646–57.

    Article  CAS  PubMed  Google Scholar 

  39. Duan L, Perez RE, Maki CG. Alpha ketoglutarate levels, regulated by p53 and OGDH, determine autophagy and cell fate/apoptosis in response to Nutlin-3a. Cancer Biol Ther. 2019;20:252–60.

    Article  CAS  PubMed  Google Scholar 

  40. Bommer UA, Telerman A. Dysregulation of TCTP in biological processes and diseases. Cells. 2020;9:1632.

  41. Zhou C, Martinez E, Di Marcantonio D, Solanki-Patel N, Aghayev T, Peri S, et al. JUN is a key transcriptional regulator of the unfolded protein response in acute myeloid leukemia. Leukemia. 2017;31:1196–205.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang H, Alberich-Jorda M, Amabile G, Yang H, Staber PB, Di Ruscio A, et al. Sox4 is a key oncogenic target in C/EBPα mutant acute myeloid leukemia. Cancer Cell. 2013;24:575–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jochum W, Passegué E, Wagner EF. AP-1 in mouse development and tumorigenesis. Oncogene. 2001;20:2401–12.

    Article  CAS  PubMed  Google Scholar 

  44. Weitzman JB, Fiette L, Matsuo K, Yaniv M. JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell. 2000;6:1109–19.

    Article  CAS  PubMed  Google Scholar 

  45. Amson R, Pece S, Lespagnol A, Vyas R, Mazzarol G, Tosoni D, et al. Reciprocal repression between P53 and TCTP. Nat Med. 2011;18:91–99.

    Article  PubMed  Google Scholar 

  46. Psaila B, Wang G, Rodriguez-Meira A, Li R, Heuston EF, Murphy L, et al. Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets. Mol Cell. 2020;78:477–492.e478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartek J, Bartkova J, Lukas J. DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene. 2007;26:7773–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Wang X, Wang XQD, Su J, Putluri N, Zhou T, et al. Dnmt3a loss and Idh2 neomorphic mutations mutually potentiate malignant hematopoiesis. Blood. 2020;135:845–56.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin CC, Hou HA, Chou WC, Kuo YY, Liu CY, Chen CY, et al. IDH mutations are closely associated with mutations of DNMT3A, ASXL1 and SRSF2 in patients with myelodysplastic syndromes and are stable during disease evolution. Am J Hematol. 2014;89:137–44.

    Article  CAS  PubMed  Google Scholar 

  50. Soto-Feliciano YM, Bartlebaugh JME, Liu Y, Sánchez-Rivera FJ, Bhutkar A, Weintraub AS, et al. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes. Genes Dev. 2017;31:973–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oh S, Boo K, Kim J, Baek SA, Jeon Y, You J, et al. The chromatin-binding protein PHF6 functions as an E3 ubiquitin ligase of H2BK120 via H2BK12Ac recognition for activation of trophectodermal genes. Nucleic Acids Res. 2020;48:9037–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gan L, Sun J, Yang S, Zhang X, Chen W, Sun Y, et al. Chromatin-binding protein PHF6 regulates activity-dependent transcriptional networks to promote hunger response. Cell Rep. 2020;30:3717–3728.e3716.

    Article  CAS  PubMed  Google Scholar 

  53. Xia D, Zhang YT, Xu GP, Yan WW, Pan XR, Tong JH. Sertraline exerts its antitumor functions through both apoptosis and autophagy pathways in acute myeloid leukemia cells. Leuk Lymphoma. 2017;58:1–10.

    Article  PubMed  Google Scholar 

  54. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pellin D, Loperfido M, Baricordi C, Wolock SL, Montepeloso A, Weinberg OK, et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10:2395.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol. 2012;16:284–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the technical services provided by the Transgenic Mouse Model Core Facility of the National Core Facility Program for Biotechnology, Ministry of Science and Technology, the Animal Resources Laboratory of National Taiwan University Centers of Genomic and Precision Medicine, the Metabolomics Core Laboratory of National Taiwan University Center of Genomic Medicine, and the National Center for Genome Medicine. We thank the technical help from the Genomics Core Facility of the Institute of Molecular Biology, Academia Sinica. We would like to acknowledge the service provided by the Flow Cytometric Analyzing and Sorting Core Facilities at National Taiwan University Hospital and First Core Laboratory of National Taiwan University College of Medicine. The study was supported by research grants including TCVGH-1093702B, TCVGH-1103701B, Ministry of Science and Technology of Taiwan (MOST 106-2314-B-002-224-MY3, MOST 106-2314-B-002-152-, MOST 107-2314-B-075A-010-, MOST 108-2314-B-075A-007-, MOST 109-2314-B-002 −221- and MOST 109-2314-B-075A-008-MY2-), and Ministry of Health and Welfare (MOHW109-TDU-B-211-134009).

Author information

Authors and Affiliations

Authors

Contributions

T-CC, W-CC and H-FT wrote the paper, performed the experiments and analyzed the data. C-YY performed the bioinformatics analysis. Y-RC performed the animal experiments. C-TY interpreted the tissue sections. W-CC planned, designed, coordinated the research. C-CL, Y-CH, P-HC, C-JK, Y-HL and H-AH provided important materials and help in the study.

Corresponding author

Correspondence to Wen-Chien Chou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, TC., Yao, CY., Chen, YR. et al. Oncogenesis induced by combined Phf6 and Idh2 mutations through increased oncometabolites and impaired DNA repair. Oncogene 41, 1576–1588 (2022). https://doi.org/10.1038/s41388-022-02193-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02193-1

This article is cited by

Search

Quick links