Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stabilization of AURKA by the E3 ubiquitin ligase CBLC in lung adenocarcinoma

Abstract

CBL family proteins (CBL, CBLB and CBLC in mammals) are E3 ubiquitin ligases of protein tyrosine kinases. CBL mediates the lysosomal degradation of activated EGFR through K63-linked ubiquitination, while CBLC has an oncogenic function by positively regulating EGFR activation through K6 and K11-linked ubiquitination in EGFR mutant lung adenocarcinoma (LAD). Here, we used immunoprecipitation and mass spectrometry to study the CBLC interactome, and found that CBLC is also involved in cell cycle regulation by stabilizing Aurora kinase A (AURKA). CBLC interacted with the kinase domain of AURKA and positively regulated the stability of AURKA by conjugating monoubiquitination and K11/K63-linked polyubiquitination, which are protective from degrading K11/K48 polyubiquitination. CBLC depletion markedly decreased the half-life of AURKA in cycloheximide-treated LAD cells. When LAD cells were synchronized with double thymidine block at the G1/S boundary and then released into mitotic arrest, CBLC depletion delayed the accumulation and activation of AURKA and prevented cancer cells from entering mitosis. CBLC deficiency significantly delayed cell cycle progression, reduced the mitotic population, and increased apoptosis of LAD cells. Targeting CBLC inhibited tumor growth of LAD cells and enhanced their sensitivity to paclitaxel in xenograft models. Immunohistochemical staining of the tissue microarray also revealed a positive correlation between the expression of CBLC and AURKA in normal and LAD tissues, further supporting the positive regulation of AURKA expression by CBLC. In summary, these findings indicate that the oncogenic E3 ligase CBLC plays a role in mitotic entry by stabilizing AURKA via ubiquitination in LAD. This work demonstrates that targeting CBLC combined with paclitaxel might be a potential option for the treatment of LAD patients who have no available targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CBLC is a novel binding partner of Aurora kinases.
Fig. 2: CBLC binds and ubiquitinates AURKA.
Fig. 3: CBLC positively regulates protein stability of AURKA.
Fig. 4: CBLC deficiency inhibited mitotic entry, promoted apoptotic death and suppressed malignant pathways by downregulating AURKA.
Fig. 5: The effect of CBLC expression on tumor growth and paclitaxel sensitivity of LAD.
Fig. 6: Correlation of CBLC and AURKA expression in normal and LAD tissues.

Similar content being viewed by others

References

  1. Genova C, Rossi G, Tagliamento M, Rijavec E, Biello F, Cerbone L, et al. Targeted therapy of oncogenic-driven advanced non-small cell lung cancer: Recent advances and new perspectives. Expert Rev Respir Med 2020;14:367–83.

    Article  CAS  Google Scholar 

  2. Thien CB, Langdon WY. Cbl: Many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol. 2001;2:294–307.

    Article  CAS  Google Scholar 

  3. Keane MM, Ettenberg SA, Nau MM, Banerjee P, Cuello M, Penninger J, et al. cbl-3: A new mammalian cbl family protein. Oncogene. 1999;18:3365–75.

    Article  CAS  Google Scholar 

  4. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I, et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell. 1999;4:1029–40.

    Article  CAS  Google Scholar 

  5. Schmidt MH, Dikic I. The Cbl interactome and its functions. Nat Rev Mol Cell Biol. 2005;6:907–18.

    Article  CAS  Google Scholar 

  6. Kim M, Tezuka T, Suziki Y, Sugano S, Hirai M, Yamamoto T. Molecular cloning and characterization of a novel cbl-family gene, cbl-c. Gene. 1999;239:145–54.

    Article  CAS  Google Scholar 

  7. Griffiths EK, Sanchez O, Mill P, Krawczyk C, Hojilla CV, Rubin E, et al. Cbl-3-deficient mice exhibit normal epithelial development. Mol Cell Biol. 2003;23:7708–18.

    Article  CAS  Google Scholar 

  8. Kim B, Lee HJ, Choi HY, Shin Y, Nam S, Seo G, et al. Clinical validity of the lung cancer biomarkers identified by bioinformatics analysis of public expression data. Cancer Res. 2007;67:7431–8.

    Article  CAS  Google Scholar 

  9. Lee WY, Goh G, Chia J, Boey A, Gunko NV, Bard F. The ubiquitin ligase CBLC maintains the network organization of the golgi apparatus. PLoS One. 2015;10:e0138789.

    Article  Google Scholar 

  10. Frankum J, Moudry P, Brough R, Hodny Z, Ashworth A, Bartek J, et al. Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity. Oncotarget. 2015;6:10746–58.

    Article  Google Scholar 

  11. Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol. 2016;18:579–86.

    Article  CAS  Google Scholar 

  12. Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy. Nat Rev Cancer. 2018;18:69–88.

    Article  CAS  Google Scholar 

  13. Hong SY, Kao YR, Lee TC, Wu CW. Upregulation of E3 ubiquitin ligase CBLC enhances EGFR dysregulation and signaling in lung adenocarcinoma. Cancer Res. 2018;78:4984–96.

  14. Lens SM, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer. 2010;10:825–41.

    Article  CAS  Google Scholar 

  15. Lindon C, Grant R, Min M. Ubiquitin-mediated degradation of aurora kinases. Front Oncol. 2015;5:307.

    PubMed  Google Scholar 

  16. Sadowski M, Suryadinata R, Tan AR, Roesley SN, Sarcevic B. Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes. IUBMB Life. 2012;64:136–42.

    Article  CAS  Google Scholar 

  17. Nikonova AS, Astsaturov I, Serebriiskii IG, Dunbrack RL Jr., Golemis EA. Aurora A kinase (AURKA) in normal and pathological cell division. Cell Mol Life Sci. 2013;70:661–87.

    Article  CAS  Google Scholar 

  18. Abdelbaki A, Akman HB, Poteau M, Grant R, Gavet O, Guarguaglini G et al. AURKA destruction is decoupled from its activity at mitotic exit but is essential to suppress interphase activity. J Cell Sci. 2020;133:jcs243071.

  19. Otto T, Horn S, Brockmann M, Eilers U, Schuttrumpf L, Popov N, et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell. 2009;15:67–78.

    Article  CAS  Google Scholar 

  20. Bertolin G, Tramier M. Insights into the non-mitotic functions of Aurora kinase A: more than just cell division. Cell Mol Life Sci. 2020;77:1031–47.

    Article  CAS  Google Scholar 

  21. Anand S, Penrhyn-Lowe S, Venkitaraman AR. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell. 2003;3:51–62.

    Article  CAS  Google Scholar 

  22. Hannak E, Kirkham M, Hyman AA, Oegema K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J Cell Biol. 2001;155:1109–16.

    Article  CAS  Google Scholar 

  23. Ke YW, Dou Z, Zhang J, Yao XB. Function and regulation of Aurora/Ipl1p kinase family in cell division. Cell Res. 2003;13:69–81.

    Article  CAS  Google Scholar 

  24. Hirota T, Kunitoku N, Sasayama T, Marumoto T, Zhang D, Nitta M, et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell. 2003;114:585–98.

    Article  CAS  Google Scholar 

  25. Cowley DO, Rivera-Perez JA, Schliekelman M, He YJ, Oliver TG, Lu L, et al. Aurora-A kinase is essential for bipolar spindle formation and early development. Mol Cell Biol. 2009;29:1059–71.

    Article  CAS  Google Scholar 

  26. Lin X, Xiang X, Hao L, Wang T, Lai Y, Abudoureyimu M, et al. The role of Aurora-A in human cancers and future therapeutics. Am J Cancer Res. 2020;10:2705–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Reiter R, Gais P, Jutting U, Steuer-Vogt MK, Pickhard A, Bink K, et al. Aurora kinase A messenger RNA overexpression is correlated with tumor progression and shortened survival in head and neck squamous cell carcinoma. Clin Cancer Res. 2006;12:5136–41.

    Article  CAS  Google Scholar 

  28. Yan M, Wang C, He B, Yang M, Tong M, Long Z, et al. Aurora-A kinase: A potent oncogene and target for cancer therapy. Med Res Rev. 2016;36:1036–79.

    Article  Google Scholar 

  29. Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in cancer: Molecular mechanisms and opportunities for Cancer therapy. Mol Cancer. 2021;20:15.

    Article  CAS  Google Scholar 

  30. Willems E, Dedobbeleer M, Digregorio M, Lombard A, Lumapat PN, Rogister B. The functional diversity of Aurora kinases: A comprehensive review. Cell Div. 2018;13:7.

    Article  Google Scholar 

  31. Teixeira LK, Reed SI. Ubiquitin ligases and cell cycle control. Annu Rev Biochem. 2013;82:387–414.

    Article  CAS  Google Scholar 

  32. Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. Biochim Biophys Acta. 2014;1843:150–62.

    Article  CAS  Google Scholar 

  33. Moghe S, Jiang F, Miura Y, Cerny RL, Tsai MY, Furukawa M. The CUL3-KLHL18 ligase regulates mitotic entry and ubiquitylates Aurora-A. Biol Open. 2012;1:82–91.

    Article  CAS  Google Scholar 

  34. Gilberto S, Peter M. Dynamic ubiquitin signaling in cell cycle regulation. J Cell Biol. 2017;216:2259–71.

    Article  CAS  Google Scholar 

  35. Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer. 2017;17:93–115.

    Article  CAS  Google Scholar 

  36. Galetta D, Cortes-Dericks L. Promising therapy in lung cancer: Spotlight on aurora kinases. Cancers (Basel) 2020;12.

  37. Lu LY, Wood JL, Ye L, Minter-Dykhouse K, Saunders TL, Yu X, et al. Aurora A is essential for early embryonic development and tumor suppression. J Biol Chem. 2008;283:31785–90.

    Article  CAS  Google Scholar 

  38. Mou PK, Yang EJ, Shi C, Ren G, Tao S, Shim JS. Aurora kinase A, a synthetic lethal target for precision cancer medicine. Exp Mol Med. 2021;53:835–47.

    Article  CAS  Google Scholar 

  39. Do TV, Hirst J, Hyter S, Roby KF, Godwin AK. Aurora A kinase regulates non-homologous end-joining and poly(ADP-ribose) polymerase function in ovarian carcinoma cells. Oncotarget. 2017;8:50376–92.

    Article  Google Scholar 

  40. Hirst J, Godwin AK. AURKA inhibition mimics BRCAness. Aging (Albany NY). 2017;9:1945–6.

    Article  Google Scholar 

  41. Caracciolo D, Riillo C, Arbitrio M, Di Martino MT, Tagliaferri P, Tassone P. Error-prone DNA repair pathways as determinants of immunotherapy activity: an emerging scenario for cancer treatment. Int J Cancer. 2020;147:2658–68.

    Article  CAS  Google Scholar 

  42. Hsu FF, Chiang MT, Li FA, Yeh CT, Lee WH, Chau LY. Acetylation is essential for nuclear heme oxygenase-1-enhanced tumor growth and invasiveness. Oncogene. 2017;36:6805–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan (MOST 109-2314-B-567-001-MY2 and MOST 110-2314-B-567-004 to SYH, MOST 109-2320-B-A49-001 to CWW) and Cardinal Tien Hospital (CTH 110A-2207 to SYH and CTH 110A-NDMC-2227 to CYW). We also thank the core facilities of IBMS, funded by Academia Sinica Core Facility and Innovative Instrument Projects (AS-CFII-108-115, AS-CFII-108-113).

Author information

Authors and Affiliations

Authors

Contributions

SYH, SHH, CYW, and CWW conceived the project. SYH, YCL, YRK, MHL, and YPL designed and performed the experiments. All authors analyzed and interpreted the data. SYH, SHH, CYW, and CWW drafted the paper.

Corresponding authors

Correspondence to Cheng-Yi Wang or Cheng-Wen Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, SY., Lu, YC., Hsiao, SH. et al. Stabilization of AURKA by the E3 ubiquitin ligase CBLC in lung adenocarcinoma. Oncogene 41, 1907–1917 (2022). https://doi.org/10.1038/s41388-022-02180-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-022-02180-6

This article is cited by

Search

Quick links