Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts

Abstract

In the tumor microenvironment, Cancer Associated Fibroblasts (CAFs) become activated by cancer cells and increase their secretory activity to produce soluble factors that contribute to tumor cells proliferation, invasion and dissemination to distant organs. The pro-tumorigenic transcription factor STAT3 and its canonical inducer, the pro-inflammatory cytokine IL-6, act conjunctly in a positive feedback loop that maintains high levels of IL-6 secretion and STAT3 activation in both tumor and stromal cells. Here, we demonstrate that STAT3 is essential for the pro-tumorigenic functions of murine breast cancer CAFs both in vitro and in vivo, and identify a STAT3 signature significantly enriched for genes encoding for secreted proteins. Among these, ANGPTL4, MMP13 and STC-1 were functionally validated as STAT3-dependent mediators of CAF pro-tumorigenic functions by different approaches. Both in vitro and in vivo CAFs activities were moreover impaired by MMP13 inhibition, supporting the feasibility of a therapeutic approach based on inhibiting STAT3-induced CAF-secreted proteins. The clinical potential of such an approach is supported by the observation that an equivalent CAF-STAT3 signature in humans is expressed at high levels in breast cancer stromal cells and characterizes patients with a shorter disease specific survival, including those with basal-like disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STAT3 is required for CAFs pro-tumorigenic functions.
Fig. 2: Immortalized CAFs show STAT3 dependent pro-tumorigenic features both in vitro and in vivo.
Fig. 3: STAT3 regulates the expression of several CAF-secreted proteins.
Fig. 4: IL-6 blockade impairs CAFs ability to support in vivo growth of 4T1 cells.
Fig. 5: Angptl4, MMP13 and Stc1 mediate in vitro CAFs pro-tumorigenic functions.
Fig. 6: Stc1 and Mmp13 strongly contribute to CAF-induced 4T1 tumors growth and progression.
Fig. 7: The CAF STAT3 signature is conserved in human breast cancer stroma and correlates with poor survival.

Similar content being viewed by others

References

  1. Joyce JA, Pollard JW. Microenvironmental regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    Article  CAS  PubMed  Google Scholar 

  2. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20:174–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    Article  CAS  PubMed  Google Scholar 

  4. Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cell communication. Differentiation. 2002;70:561–73.

    Article  CAS  PubMed  Google Scholar 

  5. Avalle L, Camporeale A, Camperi A, Poli V. STAT3 in cancer: a double edged sword. Cytokine. 2017;98:42–50.

    Article  CAS  PubMed  Google Scholar 

  6. Avalle L, Pensa S, Regis G, Novelli F, Poli V. STAT1 and STAT3 in tumorigenesis: a matter of balance. JAKSTAT. 2012;1:65–72.

    PubMed  PubMed Central  Google Scholar 

  7. Demaria M, Misale S, Giorgi C, Miano V, Camporeale A, Campisi J, et al. STAT3 can serve as a hit in the process of malignant transformation of primary cells. Cell Death Differ. 2012;19:1390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laklai H, Miroshnikova YA, Pickup MW, Collisson EA, Kim GE, Barrett AS, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.

    Article  CAS  PubMed  Google Scholar 

  11. Demaria M, Giorgi C, Lebiedzinska M, Esposito G, D’Angeli L, Bartoli A, et al. A STAT3-mediated metabolic switch is involved in tumour transformation and STAT3 addiction. Aging (Albany NY). 2010;2:823–42.

    Article  CAS  Google Scholar 

  12. Barbieri I, Quaglino E, Maritano D, Pannellini T, Riera L, Cavallo F, et al. Stat3 is required for anchorage-independent growth and metastasis but not for mammary tumor development downstream of the ErbB-2 oncogene. Mol Carcinog. 2010;49:114–20.

    CAS  PubMed  Google Scholar 

  13. Wang SW, Sun YM. The IL-6/JAK/STAT3 pathway: potential therapeutic strategies in treating colorectal cancer (Review). Int J Oncol. 2014;44:1032–40.

    Article  CAS  PubMed  Google Scholar 

  14. Albrengues J, Bertero T, Grasset E, Bonan S, Maiel M, Bourget I, et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun. 2015;6:10204.

    Article  CAS  PubMed  Google Scholar 

  15. Hendrayani SF, Al-Khalaf HH, Aboussekhra A. The cytokine IL-6 reactivates breast stromal fibroblasts through transcription factor STAT3-dependent up-regulation of the RNA-binding protein AUF1. J Biol Chem. 2014;289:30962–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP promotes immunosuppression by cancer-associated fibroblasts in the tumor microenvironment via STAT3-CCL2 signaling. Cancer Res. 2016;76:4124–35.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng X, Xu M, Yao B, Wang C, Jia Y, Liu Q. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal. 2016;28:1314–24.

    Article  CAS  PubMed  Google Scholar 

  18. Barbieri I, Pensa S, Pannellini T, Quaglino E, Maritano D, Demaria M, et al. Constitutively active Stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Cten. Cancer Res. 2010;70:2558–67.

    Article  CAS  PubMed  Google Scholar 

  19. Boye K, Maelandsmo GM. S100A4 and metastasis: a small actor playing many roles. Am J Pathol. 2010;176:528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Avalle L, Marino F, Camporeale A, Guglielmi C, Viavattene D, Bandini S, et al. Liver-Specific siRNA-Mediated Stat3 or C3 Knockdown Improves the Outcome of Experimental Autoimmune Myocarditis. Mol Ther Methods Clin Dev. 2020;18:62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rovero S, Amici A, Di Carlo E, Bei R, Nanni P, Quaglino E, et al. DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol. 2000;165:5133–42.

    Article  CAS  PubMed  Google Scholar 

  22. Nanni P, de Giovanni C, Lollini PL, Nicoletti G, Prodi G. TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. Clin Exp Metastasis. 1983;1:373–80.

    Article  CAS  PubMed  Google Scholar 

  23. Quillard T, Tesmenitsky Y, Croce K, Travers R, Shvartz E, Koskinas KC, et al. Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu H, Fellows A, Foote K, Yang Z, Figg N, Littlewood T, et al. FOXO3a (Forkhead Transcription Factor O Subfamily Member 3a) Links Vascular Smooth Muscle Cell Apoptosis, Matrix Breakdown, Atherosclerosis, and Vascular Remodeling Through a Novel Pathway Involving MMP13 (Matrix Metalloproteinase 13). Arterioscler Thromb Vasc Biol. 2018;38:555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  Google Scholar 

  27. Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, et al. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun. 2018;9:3588.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huynh J, Chand A, Gough D, Ernst M. Therapeutically exploiting STAT3 activity in cancer - using tissue repair as a road map. Nat Rev Cancer. 2019;19:82–96.

    Article  CAS  PubMed  Google Scholar 

  29. Dijkgraaf EM, Santegoets SJ, Reyners AK, Goedemans R, Wouters MC, Kenter GG, et al. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann Oncol. 2015;26:2141–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rossi JF, Negrier S, James ND, Kocak I, Hawkins R, Davis H, et al. A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br J Cancer. 2010;103:1154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gong X, Hou Z, Endsley MP, Gronseth EI, Rarick KR, Jorns JM, et al. Interaction of tumor cells and astrocytes promotes breast cancer brain metastases through TGF-beta2/ANGPTL4 axes. NPJ Precis Oncol. 2019;3:24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Teo Z, Sng MK, Chan JSK, Lim MMK, Li Y, Li L, et al. Elevation of adenylate energy charge by angiopoietin-like 4 enhances epithelial-mesenchymal transition by inducing 14-3-3gamma expression. Oncogene. 2017;36:6408–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Garner JM, Ellison DW, Finkelstein D, Ganguly D, Du Z, Sims M, et al. Molecular heterogeneity in a patient-derived glioblastoma xenoline is regulated by different cancer stem cell populations. PLoS ONE. 2015;10:e0125838.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li L, Chong HC, Ng SY, Kwok KW, Teo Z, Tan EHP, et al. Angiopoietin-like 4 increases pulmonary tissue leakiness and damage during influenza pneumonia. Cell Rep. 2015;10:654–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chong HC, Chan JS, Goh CQ, Gounko NV, Luo B, Wang X, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther. 2014;22:1593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao F, Yang G, Feng M, Cao Z, Liu Y, Qiu J, et al. Expression, function and clinical application of stanniocalcin-1 in cancer. J Cell Mol Med. 2020;24:7686–96.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chang AC, Doherty J, Huschtscha LI, Redvers R, Restall C, Reddel RR, et al. STC1 expression is associated with tumor growth and metastasis in breast cancer. Clin Exp Metastasis. 2015;32:15–27.

    Article  CAS  PubMed  Google Scholar 

  38. Pena C, Cespedes MV, Lindh MB, Kiflemariam S, Mezheyeuski A, Edqvist PH, et al. STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res. 2013;73:1287–97.

    Article  CAS  PubMed  Google Scholar 

  39. Folgueira MA, Maistro S, Katayama ML, Roela RA, Mundim FG, Nanogaki S, et al., Markers of breast cancer stromal fibroblasts in the primary tumour site associated with lymph node metastasis: a systematic review including our case series. Biosci Rep. 2013;33. https://portlandpress.com/bioscirep/article/33/6/e00085/55978/Markers-of-breast-cancer-stromal-fibroblasts-in.

  40. Paek AR, Mun JY, Hong KM, Lee J, Hong DW, You HJ. Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer. BMB Rep. 2017;50:621–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, B, X Cao, Y Liu, W Cao, F Zhang, S Zhang, et al., Tumor-derived matrix metalloproteinase-13 (MMP-13) correlates with poor prognoses of invasive breast cancer. BMC Cancer, 2008;8. https://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-8-83.

  42. Dumortier M, Ladam F, Damour I, Vacher S, Bieche I, Marchand N, et al. ETV4 transcription factor and MMP13 metalloprotease are interplaying actors of breast tumorigenesis. Breast Cancer Res. 2018;20:73.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fan Y, Gan Y, Shen Y, Cai X, Song Y, Zhao F, et al. Leptin signaling enhances cell invasion and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production. Oncotarget. 2015;6:16120–34.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nielsen BS, Rank F, Lopez JM, Balbin M, Vizoso F, Lund LR, et al. Collagenase-3 expression in breast myofibroblasts as a molecular marker of transition of ductal carcinoma in situ lesions to invasive ductal carcinomas. Cancer Res. 2001;61:7091–100.

    CAS  PubMed  Google Scholar 

  45. Tell RW, Horvath CM. Bioinformatic analysis reveals a pattern of STAT3-associated gene expression specific to basal-like breast cancers in human tumors. Proc Natl Acad Sci USA. 2014;111:12787–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aslakson CJ, Miller FR. Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res. 1992;52:1399–405.

    CAS  PubMed  Google Scholar 

  47. Schrors B, Boegel S, Albrecht C, Bukur T, Bukur V, Holtstrater C, et al. Multi-omics characterization of the 4T1 murine mammary gland tumor model. Front Oncol. 2020;10:1195.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Poli V, Balena R, Fattori E, Markatos A, Yamamoto M, Tanaka H, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994;13:1189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vallania F, Schiavone D, Dewilde S, Pupo E, Garbay S, Calogero R, et al. Genome-wide discovery of functional transcription factor binding sites by comparative genomics: the case of Stat3. Proc Natl Acad Sci USA. 2009;106:5117–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Avalle L, Incarnato D, Savino A, Gai M, Marino F, Pensa S, et al. MicroRNAs-143 and -145 induce epithelial to mesenchymal transition and modulate the expression of junction proteins. Cell Death Differ. 2017;24:1750–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gendoo DMA, Zon M, Sandhu V, Manem VSK, Ratanasirigulchai N, Chen GM, et al. MetaGxData: clinically annotated breast, ovarian and pancreatic cancer datasets and their use in generating a multi-cancer gene signature. Sci Rep. 2019;9:8770.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Savino A, De Marzo N, Provero P, Poli V. Meta-analysis of microdissected breast tumors reveals genes regulated in the stroma but hidden in bulk analysis. Cancers (Basel). 2021;13:3371.

    Article  CAS  Google Scholar 

  53. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44:e71–e71.

    Article  PubMed  Google Scholar 

  54. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinforma. 2013;14:7.

    Article  Google Scholar 

  55. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank D. Taverna, C. Ambrogio, E. Calautti, M. Mazzone for critically reading the manuscript. This work was supported by the Italian Cancer Research Association (AIRC, IG16930 to V.P.; IG 20240 to S.O.); the Italian Ministry of University and Research (MIUR PRIN 2017 to V.P.); the Truus and Gerrit van Riemsdijk Foundation, Liechtenstein, donation to V.P.; Piedmont Region (Deflect). L. Avalle was supported by Fondazione Umberto Veronesi.

Author information

Authors and Affiliations

Authors

Contributions

Conception, design and study supervision VP; bioinformatics data generation and analysis, EM, AS, NDM, DI, SO; in vitro experiments, AC, CG, FM, SAS, LR, DV, AL, DI; in vivo experiments, LA, AC, LR, DV, SAS, VS; Acquisition of data, CZ and MF; Analysis and interpretation of data, EM, LA, AS, LR, DV, DI, VP, PD, SO.

Corresponding authors

Correspondence to Lidia Avalle or Valeria Poli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avalle, L., Raggi, L., Monteleone, E. et al. STAT3 induces breast cancer growth via ANGPTL4, MMP13 and STC1 secretion by cancer associated fibroblasts. Oncogene 41, 1456–1467 (2022). https://doi.org/10.1038/s41388-021-02172-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02172-y

This article is cited by

Search

Quick links