Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SKAP2 suppresses inflammation-mediated tumorigenesis by regulating SHP-1 and SHP-2

Abstract

Inflammatory bowel diseases, like ulcerative colitis and Crohn’s disease are frequently accompanied by colorectal cancers. However, the mechanisms underlying colitis-associated cancers are not fully understood. Src Kinase Associated Phosphoprotein 2 (SKAP2), a substrate of Src family kinases, is highly expressed in macrophages. Here, we examined the effects of SKAP2 on inflammatory responses in a mouse model of tumorigenesis with colitis induced by azoxymethane/dextran sulfate sodium. SKAP2 knockout increased the severity of colitis and tumorigenesis, as well as lipopolysaccharide (LPS) induced acute inflammation. SKAP2 attenuated inflammatory signaling in macrophages induced by uptake of cancer cell-derived exosomes. SKAP2−/− mice were characterized by the activation of NF-κB signaling and the upregulation and release of cytokines including TNFα, IL-1β, IL-6, CXCL-9/-10/-13, and sICAM1; SKAP2 overexpression attenuated NF-κB activation. Mechanistically, SKAP2 formed a complex with the SHP-1 tyrosine phosphatase via association with the Sirpα transmembrane receptor. SKAP2 also physically associated with the TIR domain of MyD88, TIRAP, and TRAM, adaptors of toll-like receptor 4 (TLR4). SKAP2-mediated recruitment of the Sirpα/SHP-1 complex to TLR4 attenuated inflammatory responses, whereas direct interaction of SKAP2 with SHP-2 decreased SHP-2 activation. SHP-2 is required for efficient NF-κB activation and suppresses the TRAM/TRIF-INFβ pathway; therefore, SKAP2-mediated SHP-2 inhibition affected two signaling axes from TLR4. The present findings indicate that SKAP2 prevents excess inflammation by inhibiting the TLR4-NF-κB pathway, and it activates the TLR4-IFNβ pathway through SHP-1 and SHP-2, thereby suppressing inflammation-mediated tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AOM-DSS-induced colorectal tumors were aggravated in SKAP2−/− mice.
Fig. 2: Upregulation of pro-inflammatory cytokines in AOM-DSS treated SKAP2−/− mice.
Fig. 3: LPS-induced inflammation was increased in SKAP2−/− mice.
Fig. 4: SKAP2 associates with SHP-1 and SHP-2, and regulates the interaction of SHPs with TLR4.
Fig. 5: SKAP2 associates with MyD88, which connects SHPs to TLR4/MyD88.
Fig. 6: Intracellular co-localization of SHP-1 and TLR4 was promoted by SKAP2.

Similar content being viewed by others

References

  1. Bourette RP, Thérier J, Mouchiroud G. Macrophage colony-stimulating factor receptor induces tyrosine phosphorylation of SKAP55R adaptor and its association with actin. Cell Signal. 2005;17:941–9.

    Article  CAS  PubMed  Google Scholar 

  2. Reinhold A, Reimann S, Reinhold D, Schraven B, Togni M. Expression of SKAP-HOM in DCs is required for an optimal immune response in vivo. J Leukoc Biol. 2009;86:61–71.

    Article  CAS  PubMed  Google Scholar 

  3. Swanson KD, Tang Y, Ceccarelli DF, Poy F, Sliwa JP, Neel BG, et al. The Skap-hom dimerization and PH domains comprise a 3’-phosphoinositide-gated molecular switch. Mol Cell. 2008;32:564–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tanaka M, Shimamura S, Kuriyama S, Maeda D, Goto A, Aiba N. SKAP2 Promotes Podosome Formation to Facilitate Tumor-Associated Macrophage Infiltration and Metastatic Progression. Cancer Res. 2016;76:358–69.

    Article  CAS  PubMed  Google Scholar 

  5. Boras M, Volmering S, Bokemeyer A, Rossaint J, Block H, Bardel B, et al. Skap2 is required for β(2) integrin-mediated neutrophil recruitment and functions. J Exp Med. 2017;214:851–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shaban L, Nguyen GT, Mecsas-Faxon BD, Swanson KD, Tan S, Mecsas J. Yersinia pseudotuberculosis YopH targets SKAP2-dependent and independent signaling pathways to block neutrophil antimicrobial mechanisms during infection. PLoS Pathog. 2020;16:e1008576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nguyen GT, Shaban L, Mack M, Swanson KD, Bunnell SC, Sykes DB, et al. SKAP2 is required for defense against K. pneumoniae infection and neutrophil respiratory burst. Elife 2020;9:e56656.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Timms JF, Swanson KD, Marie-Cardine A, Raab M, Rudd CE, Schraven B, et al. SHPS-1 is a scaffold for assembling distinct adhesion-regulated multi-protein complexes in macrophages. Curr Biol. 1999;9:927–30.

    Article  CAS  PubMed  Google Scholar 

  9. Alenghat FJ, Baca QJ, Rubin NT, Pao LI, Matozaki T, Lowell CA, et al. Macrophages require Skap2 and Sirpα for integrin-stimulated cytoskeletal rearrangement. J Cell Sci. 2012;125:5535–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi L, Han X, Li JX, Liao YT, Kou FS, Wang ZB, et al. Identification of differentially expressed genes in ulcerative colitis and verification in a colitis mouse model by bioinformatics analyses. World J Gastroenterol. 2020;26:5983–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yashiro M. Ulcerative colitis-associated colorectal cancer. World J Gastroenterol. 2014;20:16389–97.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Snider AJ, Bialkowska AB, Ghaleb AM, Yang VW, Obeid LM, Hannun YA. Murine model for colitis-associated cancer of the colon. Methods Mol Biol. 2016;1438:245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Waldner MJ, Neurath MF. Mechanisms of immune signaling in colitis-associated cancer. Cell Mol Gastroenterol Hepatol. 2015;1:6–16.

    Article  PubMed  Google Scholar 

  14. Fukata M, Hernandez Y, Conduah D, Cohen J, Chen A, Breglio K, et al. Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis. 2009;15:997–1006.

    Article  PubMed  Google Scholar 

  15. Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ, et al. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol. 2011;31:379–446.

    Article  CAS  PubMed  Google Scholar 

  16. Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015;12:114.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Corrin B. Lung pathology in septic shock. J Clin Pathol. 1980;33:891–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chattopadhyay S, Sen GC. Tyrosine phosphorylation in toll-like receptor signaling. Cytokine Growth Factor Rev. 2014;25:533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Antwi-Baffour SS. Molecular characterisation of plasma membrane-derived vesicles. J Biomed Sci. 2015;22:68.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ciardiello C, Cavallini L, Spinelli C, Yang J, Reis-Sobreiro M, de Candia P, et al. Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int J Mol Sci. 2016;17:175.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Qian Z, Shen Q, Yang X, Qiu Y, Zhang W. The role of extracellular vesicles: an epigenetic view of the cancer microenvironment. Biomed Res Int. 2015;2015:649161.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Steinbichler TB, Dudás J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017;44:170–81.

    Article  CAS  PubMed  Google Scholar 

  23. Paschon V, Takada SH, Ikebara JM, Sousa E, Raeisossadati R, Ulrich H, et al. Interplay between exosomes, microRNAs and toll-like receptors in brain disorders. Mol Neurobiol. 2016;53:2016–28.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Shi H, Yuan X, Jiang P, Qian H, Xu W. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer. 2018;17:146.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Barichello T, Generoso JS, Simões LR, Elias SG, Quevedo J. Role of oxidative stress in the pathophysiology of pneumococcal meningitis. Oxid Med Cell Longev. 2013;2013:371465.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kagan JC, Su T, Horng T, Chow A, Akira S, Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat Immunol. 2008;9:361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN, Peri F. TLR4 Signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines. 2017;5:34.

    Article  PubMed Central  Google Scholar 

  28. Li P, Wu YH, Zhu YT, Li MX, Pei HH. Requirement of Rab21 in LPS-induced TLR4 signaling and pro-inflammatory responses in macrophages and monocytes. Biochem Biophys Res Commun. 2019;508:169–76.

    Article  CAS  PubMed  Google Scholar 

  29. Marongiu L, Gornati L, Artuso I, Zanoni I, Granucci F. Below the surface: the inner lives of TLR4 and TLR9. J Leukoc Biol. 2019;106:147–60.

    Article  CAS  PubMed  Google Scholar 

  30. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–5.

    Article  CAS  PubMed  Google Scholar 

  31. Rosadini CV, Kagan JC. Early innate immune responses to bacterial LPS. Curr Opin Immunol. 2017;44:14–19.

    Article  CAS  PubMed  Google Scholar 

  32. Khaled AR, Butfiloski EJ, Sobel ES, Schiffenbauer J. Functional consequences of the SHP-1 defect in motheaten viable mice: role of NF-kappa B. Cell Immunol. 1998;185:49–58.

    Article  CAS  PubMed  Google Scholar 

  33. Massa PT, Wu C. Increased inducible activation of NF-kappaB and responsive genes in astrocytes deficient in the protein tyrosine phosphatase SHP-1. J Interferon Cytokine Res. 1998;18:499–507.

    Article  CAS  PubMed  Google Scholar 

  34. Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, et al. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol. 1996;16:6887–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oshima K, Ruhul Amin AR, Suzuki A, Hamaguchi M, Matsuda S. SHPS-1, a multifunctional transmembrane glycoprotein. FEBS Lett. 2002;519:1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Timms JF, Carlberg K, Gu H, Chen H, Kamatkar S, Nadler MJ, et al. Identification of major binding proteins and substrates for the SH2-containing protein tyrosine phosphatase SHP-1 in macrophages. Mol Cell Biol. 1998;18:3838–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyake A, Murata Y, Okazawa H, Ikeda H, Niwayama Y, Ohnishi H, et al. Negative regulation by SHPS-1 of Toll-like receptor-dependent proinflammatory cytokine production in macrophages. Genes Cells. 2008;13:209–19.

    Article  CAS  PubMed  Google Scholar 

  38. Lu R, Pan H, Shively JE. CEACAM1 negatively regulates IL-1β production in LPS activated neutrophils by recruiting SHP-1 to a SYK-TLR4-CEACAM1 complex. PLoS Pathog. 2012;8:e1002597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ramachandran IR, Song W, Lapteva N, Seethammagari M, Slawin KM, Spencer DM, et al. The phosphatase SRC homology region 2 domain-containing phosphatase-1 is an intrinsic central regulator of dendritic cell function. J Immunol. 2011;186:3934–45.

    Article  CAS  PubMed  Google Scholar 

  40. You M, Flick LM, Yu D, Feng GS. Modulation of the nuclear factor kappa B pathway by Shp-2 tyrosine phosphatase in mediating the induction of interleukin (IL)-6 by IL-1 or tumor necrosis factor. J Exp Med. 2001;193:101–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Feng J, He L, Li Y, Xiao F, Hu G. Modeling of PH domains and phosphoinositides interactions and beyond. Adv Exp Med Biol. 2019;1111:19–32.

    Article  PubMed  Google Scholar 

  42. Niogret C, Birchmeier W, Guarda G. SHP-2 in lymphocytes’ cytokine and inhibitory receptor signaling. Front Immunol. 2019;10:2468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. van Beijnum JR, Buurman WA, Griffioen AW. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis. 2008;11:91–99.

    Article  CAS  PubMed  Google Scholar 

  44. Buwitt-Beckmann U, Heine H, Wiesmüller KH, Jung G, Brock R, Akira S, et al. Toll-like receptor 6-independent signaling by diacylated lipopeptides. Eur J Immunol. 2005;35:282–9.

    Article  CAS  PubMed  Google Scholar 

  45. Pashenkov MV, Murugina NE, Budikhina AS, Pinegin BV. Synergistic interactions between NOD receptors and TLRs: Mechanisms and clinical implications. J Leukoc Biol. 2019;105:669–80.

    Article  CAS  PubMed  Google Scholar 

  46. Jakopin Ž, Corsini E. THP-1 Cells and pro-inflammatory cytokine production: an in vitro tool for functional characterization of NOD1/NOD2 antagonists. Int J Mol Sci. 2019;20:4265.

    Article  PubMed Central  Google Scholar 

  47. van Heel DA, Ghosh S, Butler M, Hunt KA, Lundberg AM, Ahmad T, et al. Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn’s disease. Lancet. 2005;365:1794–6.

    Article  PubMed  Google Scholar 

  48. Bretz NP, Ridinger J, Rupp AK, Rimbach K, Keller S, Rupp C, et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling. J Biol Chem. 2013;288:36691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chow A, Zhou W, Liu L, Fong MY, Champer J, Van Haute D, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Sci Rep. 2014;4:5750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim EJ, Suk K, Lee WH. SHPS-1 and a synthetic peptide representing its ITIM inhibit the MyD88, but not TRIF, pathway of TLR signaling through activation of SHP and PI3K in THP-1 cells. Inflamm Res. 2013;62:377–86.

    Article  CAS  PubMed  Google Scholar 

  51. Medvedev AE, Piao W, Shoenfelt J, Rhee SH, Chen H, Basu S, et al. Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem. 2007;282:16042–53.

    Article  CAS  PubMed  Google Scholar 

  52. Chaudhary A, Fresquez TM, Naranjo MJ. Tyrosine kinase Syk associates with toll-like receptor 4 and regulates signaling in human monocytic cells. Immunol Cell Biol. 2007;85:249–56.

    Article  CAS  PubMed  Google Scholar 

  53. An H, Zhao W, Hou J, Zhang Y, Xie Y, Zheng Y, et al. SHP-2 phosphatase negatively regulates the TRIF adaptor protein-dependent type I interferon and proinflammatory cytokine production. Immunity. 2006;25:919–28.

    Article  CAS  PubMed  Google Scholar 

  54. Shimamura S, Sasaki K, Tanaka M. The Src substrate SKAP2 regulates actin assembly by interacting with WAVE2 and cortactin proteins. J Biol Chem. 2013;288:1171–83.

    Article  CAS  PubMed  Google Scholar 

  55. Fløyel T, Meyerovich K, Prause MC, Kaur S, Frørup C, Mortensen HB, et al. SKAP2, a candidate gene for type 1 diabetes, regulates β-cell apoptosis and glycemic control in newly diagnosed patients. Diabetes. 2021;70:464–76.

    Article  PubMed  Google Scholar 

  56. Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol. 2020;108:787–99.

    Article  CAS  PubMed  Google Scholar 

  57. Chen R. Isolation and culture of mouse bone marrow-derived macrophages (BMM’phi'). Bio-protocol. 2012;2:e68.

    Article  Google Scholar 

Download references

Acknowledgements

We thank members of the Bioscience Education and Research Support Center (BERSC) of Akita University for technical assistance. This work was supported by JSPS KAKENHI grants (19H03495 to M. Tanaka, 19K07681 to G. Itoh, 18K07192 to S. Kuriyama, 20H01094 to K. Takagane, and 19K07454 to A. Goto), Takeda Science Foundation grants (to M. Tanaka and G. Itoh), a Research Grant from the Princess Takamatsu Cancer Research Fund (19-25123 to M. Tanaka), Smoking Research Foundation to A. Goto, and the Cooperative Research Project Program of Joint Usage/Research Center at the Institute of Development, Aging and Cancer, Tohoku University (G. Itoh).

Funding

This work was supported by JSPS KAKENHI grants (19H03495 to M. Tanaka, 19K07681 to G. Itoh, 21K07090 to S. Kuriyama, 20H01094 to K. Takagane, and 19K07454 to A. Goto), the Takeda Science Foundation grants (to M. Tanaka and G. Itoh), and a Research Grant from the Princess Takamatsu Cancer Research Fund (19-25123 to M. Tanaka).

Author information

Authors and Affiliations

Authors

Contributions

KT: data acquisition, data analysis, manuscript writing; MU, GI, SK: experimental methods, data acquisition; AG: data analysis; MT: funding, supervision, experimental design, data analysis, manuscript writing

Corresponding author

Correspondence to Masamitsu Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagane, K., Umakoshi, M., Itoh, G. et al. SKAP2 suppresses inflammation-mediated tumorigenesis by regulating SHP-1 and SHP-2. Oncogene 41, 1087–1099 (2022). https://doi.org/10.1038/s41388-021-02153-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02153-1

This article is cited by

Search

Quick links