Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis

Abstract

Research has indicated that hypoxia profoundly contributes to chemoresistance of pancreatic cancer (PC), while the precise mechanism has not been fully elucidated. In this study, we report a hypoxic exosomal circular RNA (circRNA)-mediated mechanism of conferred chemoresistance in PC cells. Gemcitabine (GEM) resistance was enhanced in normoxic PC cells incubated with exosomes derived from hypoxic PC cells. CircRNA microarray displayed that circZNF91 was remarkably increased in hypoxic exosomes of PC cells compared with normoxic exosomes. Overexpression of circZNF91 obviously stimulated chemoresistance in PC cells, while knockdown of circZNF91 retarded the hypoxic exosome-transmitted chemoresistance. Mechanistically, the hypoxic-induced exosomal circZNF91 transmitted into normoxic PC cells could competitively bind to miR-23b-3p, which deprives the inhibition of miR-23b-3p on expression of deacetylase Sirtuin1 (SIRT1). Consequently, the upregulated SIRT1 enhanced deacetylation-dependent stability of HIF-1α protein, leading to glycolysis and GEM chemoresistance of recipient PC cells. In addition, we revealed that the increased circZNF91 in hypoxic exosome was attributed to the transcriptional regulation by HIF-1α. Coincidently, transmission of hypoxic exosomes into subcutaneous xenografts in nude mice obviously facilitated the chemoresistance of transplanted PC tumor, which could be reversed by depletion of circZNF91 or upregulation of miR-23b-3p. Furthermore, clinical data showed that circZNF91 was significantly upregulated in PC tissues and correlated with overexpression of glycolytic enzymes and short overall survival time. Collectively, exosomal circZNF91 can function as a cargo mediating the signal transmission between hypoxic and normoxic tumor cells to promote GEM chemoresistance of PC and may potentially serve as a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CircZNF91 is critical for the hypoxic exosome-promoted GEM resistance in normoxic cancer cells.
Fig. 2: Exosomal circZNF91 functions as a sponge of miR-23b-3p.
Fig. 3: CircZNF91 upregulates SIRT1 expression via competitively binding to miR-23b-3p.
Fig. 4: Exosomal circZNF91 stabilizes HIF-1α protein by SIRT1-dependent deacetylation.
Fig. 5: Hypoxic exosomal circZNF91 promotes GEM resistance of normoxic PC cells by enhancing HIF-1α-regulated glycolysis.
Fig. 6: Exosomal circZNF91 is transcriptionally upregulated by HIF-1α during hypoxic condition.
Fig. 7: Targeting circZNF91/miR-23b-3p impedes the hypoxic exosome-promoted chemoresistance of PC in vivo.
Fig. 8: CircZNF91 is overexpressed in PC tissues and associated with poor prognosis.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Article  PubMed  Google Scholar 

  2. Christenson ES, Jaffee E, Azad NS. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol. 2020;21:e135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Klotz R, Doerr-Harim C, Ahmed A, Tjaden C, Tarpey M, Diener MK, et al. Top ten research priorities for pancreatic cancer therapy. Lancet Oncol. 2020;21:e295–6.

    Article  PubMed  Google Scholar 

  4. Hosein AN, Brekken RA, Maitra A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 2020;17:487–505.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Paulson AS, Tran CH, Tempero MA, Lowy AM. Therapeutic advances in pancreatic cancer. Gastroenterology. 2013;144:1316–26.

    Article  CAS  PubMed  Google Scholar 

  6. Da CWJ, Tran CH, Massarweh NN. Neoadjuvant treatment for patients with localized pancreatic adenocarcinoma: are we there yet? Jama Oncol. 2020;6:1163–4.

    Article  Google Scholar 

  7. Bednar F, Pasca DMM. Chemotherapy and tumor evolution shape pancreatic cancer recurrence after resection. Cancer Disco. 2020;10:762–4.

    Article  CAS  Google Scholar 

  8. Halbrook CJ, Pontious C, Kovalenko I, Lapienyte L, Dreyer S, Lee HJ, et al. Macrophage-released pyrimidines inhibit gemcitabine therapy in pancreatic cancer. Cell Metab. 2019;29:1390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karasic TB, O’Hara MH, Loaiza-Bonilla A, Reiss KA, Teitelbaum UR, Borazanci E, et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. Jama Oncol. 2019;5:993–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yokoi K, Fidler IJ. Hypoxia increases resistance of human pancreatic cancer cells to apoptosis induced by gemcitabine. Clin Cancer Res. 2004;10:2299–306.

    Article  CAS  PubMed  Google Scholar 

  11. Doktorova H, Hrabeta J, Khalil MA, Eckschlager T. Hypoxia-induced chemoresistance in cancer cells: the role of not only HIF-1. Biomed Pap. 2015;159:166–77.

    Article  Google Scholar 

  12. Warfel NA, El-Deiry WS. HIF-1 signaling in drug resistance to chemotherapy. Curr Med Chem. 2014;21:3021.

    Article  CAS  PubMed  Google Scholar 

  13. Rohwer N, Cramer T. Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 2011;14:191–201.

    Article  CAS  PubMed  Google Scholar 

  14. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18:157.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 2017;32:71–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lane JS, Hoff DV, Cridebring D, Goel A. Extracellular vesicles in diagnosis and treatment of pancreatic cancer: current state and future perspectives. Cancers (Basel). 2020;12:1530.

    Article  CAS  Google Scholar 

  17. Ding C, Yi X, Wu X, Bu X, Wang D, Wu Z, et al. Exosome-mediated transfer of circRNA CircNFIX enhances temozolomide resistance in glioma. Cancer Lett. 2020;479:1–12.

    Article  CAS  PubMed  Google Scholar 

  18. Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol Oncol. 2020;14:539–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H. How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 2018;38:1–11.

    Article  PubMed  Google Scholar 

  20. Lin SC, Chien CW, Lee JC, Yeh YC, Hsu KF, Lai YY, et al. Suppression of dual-specificity phosphatase-2 by hypoxia increases chemoresistance and malignancy in human cancer cells. J Clin Invest. 2011;121:1905–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30. 1-13

    Article  CAS  PubMed  Google Scholar 

  22. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–7.

    Article  CAS  PubMed  Google Scholar 

  23. Kristensen LS, Okholm T, Veno MT, Kjems J. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 2018;15:280–91.

    Article  PubMed  Google Scholar 

  24. Yoon JH, Srikantan S, Gorospe M. MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods. 2012;58:81–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oon CE, Strell C, Yeong KY, Ostman A, Prakash J. SIRT1 inhibition in pancreatic cancer models: contrasting effects in vitro and in vivo. Eur J Pharm. 2015;757:59–67.

    Article  CAS  Google Scholar 

  26. Zhang JG, Hong DF, Zhang CW, Sun XD, Wang ZF, Shi Y, et al. Sirtuin 1 facilitates chemoresistance of pancreatic cancer cells by regulating adaptive response to chemotherapy-induced stress. Cancer Sci. 2014;105:445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou W, Xu J, Wang C, Shi D, Yan Q. miR-23b-3p regulates apoptosis and autophagy via suppressing SIRT1 in lens epithelial cells. J Cell Biochem. 2019;120:19635–46.

    Article  CAS  PubMed  Google Scholar 

  28. Borji M, Nourbakhsh M, Shafiee SM, Owji AA, Abdolvahabi Z, Hesari Z, et al. Down-regulation of SIRT1 expression by mir-23b contributes to lipid accumulation in HepG2 cells. Biochem Genet. 2019;57:507–21.

    Article  CAS  PubMed  Google Scholar 

  29. Joo HY, Yun M, Jeong J, Park ER, Shin HJ, Woo SR, et al. SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1alpha (HIF-1alpha) via direct interactions during hypoxia. Biochem Biophys Res Commun. 2015;462:294–300.

    Article  CAS  PubMed  Google Scholar 

  30. Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci USA. 2008;105:19579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst. 2003;95:516–25.

    Article  CAS  PubMed  Google Scholar 

  33. Boeckel JN, Jae N, Heumuller AW, Chen W, Boon RA, Stellos K, et al. Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res. 2015;117:884–90.

    Article  CAS  PubMed  Google Scholar 

  34. Abraham J, Salama NN, Azab AK. The role of P-glycoprotein in drug resistance in multiple myeloma. Leuk Lymphoma. 2015;56:26–33.

    Article  CAS  PubMed  Google Scholar 

  35. Dong C, Liu X, Wang H, Li J, Dai L, Li J, et al. Hypoxic non-small-cell lung cancer cell-derived exosomal miR-21 promotes resistance of normoxic cell to cisplatin. Onco Targets Ther. 2019;12:1947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Takahashi K, Yan IK, Kogure T, Haga H, Patel T. Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. Febs Open Bio. 2014;4:458–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang P, Zhang J, Zhang L, Zhu Z, Fan J, Chen L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology. 2013;145:1133–43. e1112

    Article  CAS  PubMed  Google Scholar 

  38. An Y, Zhang Z, Shang Y, Jiang X, Dong J, Yu P, et al. miR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death Dis. 2015;6:e1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang J, Xue H, Zhu Z, Gao J, Zhao M, Ma Z. Expression of serum exosomal miR‑23b‑3p in non‑small cell lung cancer and its diagnostic efficacy. Oncol Lett. 2020;20:30.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Robey IF, Lien AD, Welsh SJ, Baggett BK, Gillies RJ. Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia. 2005;7:324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–6.

    Article  CAS  PubMed  Google Scholar 

  42. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65:613–21.

    Article  CAS  PubMed  Google Scholar 

  43. Cho HS, Han TS, Hur K, Ban HS. The roles of hypoxia-inducible factors and non-coding RNAs in gastrointestinal cancer. Genes (Basel). 2019;10:1008.

    Article  CAS  Google Scholar 

  44. Zeng Z, Xu F, Zheng H, Cheng P, Chen Q, Ye Z, et al. LncRNA-MTA2TR functions as a promoter in pancreatic cancer via driving deacetylation-dependent accumulation of HIF-1α. Theranostics. 2019;9:5298–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The National Science Foundation Committee of China (Grant Number: 81372666, 81672406 to GZ; 81802450 to SZ; 81802377 to YN); and Clinical Research Physician Program of Tongji Medical College, Huazhong University of Science and Technology to GZ supported this study.

Author information

Authors and Affiliations

Authors

Contributions

Designed and supervised the research: GZ. Performed cellular experiments: ZZ, YZ, SZ, ZY, YH, FX, JT, FW,SH and MH. Conducted animal experiments: ZZ, YZ, SZ. Provided the clinical data: QYC, YN, PH, DC, PX, JC, CH and CYW. Analyzed the data: GZ and ZZ.Wrote the manuscript: GZ and ZZ.

Corresponding author

Correspondence to Gang Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Zhao, Y., Chen, Q. et al. Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene 40, 5505–5517 (2021). https://doi.org/10.1038/s41388-021-01960-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-01960-w

This article is cited by

Search

Quick links