Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop

A Correction to this article was published on 08 September 2021

This article has been updated

Abstract

Hypoxic tumor microenvironment(TME) is a universal feature in solid carcinoma and is associated with unfavorable prognosis. Tumor-derived exosomes are now significantly implicating in mediating cellular communication and interactions in TME. The aim of this study was to identify exosomal miR-301a-3p involved in gastric cancer(GC) progression and metastasis. Here, we found hypoxia promote GC exosomes release and miR-301a-3p expression in an HIF-1α-dependent manner. In hypoxic TME, enriched miR-301a-3p could be transmitted between GC cells via exosomes and then contributed to inhibit HIF-1α degradation through targeting PHD3, that were capable to hydroxylate HIF-1α subunits to ubiquitinate degradation. This synergistical positive feedback loop between HIF-1α and miR-301a-3p facilitated GC proliferation, invasion, migration, and epithelial–mesenchymal transition. In clinical samples, we further discovered circulating exosomal miR-301a-3p in serum was positively related with peritoneal metastasis. Collectively, these data indicate that GC cells could generate miR-301a-3p–rich exosomes in the hypoxic TME, which then help to HIF-1α accumulation and promote GC malignant behaviors and metastasis. Exosomal miR-301a-3p/HIF-1α signaling axis may serve as a promising predictor and potential therapeutic target of GC with metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HIF-1α-facilitated exosomes release both in GC cells and tissues under hypoxia.
Fig. 2: Hypoxia GC-derived exosomes promoted GC proliferation, invasion, migration, and colony formation both in vitro and in vivo.
Fig. 3: MiR-301a-3p was highly expressed in H-exo and can be direct transfer between GC cells.
Fig. 4: Hypoxia-induced GC-exosomal miR-301a-3p promoted GC progression and metastasis.
Fig. 5: HIF-1α-induced miR-301a-3p increased stability of HIF-1α by targeting PHD3.
Fig. 6: MiR-301a-3p positively correlated with HIF-1α in GC and is associated with GC peritoneal metastasis in serum exosomes.
Fig. 7: Schematic model of exo-miR-301a-3p in gastric cancer progression.

Similar content being viewed by others

Change history

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  2. Ajani JA, Lee J, Sano T, Janjigian YY, Fan D, Song S. Gastric adenocarcinoma. Nat Rev Dis Prim. 2017;3:17036.

    Article  PubMed  Google Scholar 

  3. Lordick F, Shitara K, Janjigian YY. New agents on the horizon in gastric cancer. Ann Oncol. 2017;28:1767–75.

    Article  CAS  PubMed  Google Scholar 

  4. Zong L, Abe M, Seto Y, Ji J. The challenge of screening for early gastric cancer in China. Lancet. 2016;388:2606.

    Article  PubMed  Google Scholar 

  5. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, et al. Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 2012;72:2473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dassler-Plenker J, Kuttner V, Egeblad M. Communication in tiny packages: exosomes as means of tumor-stroma communication. Biochim Biophys Acta Rev Cancer. 2020;1873:188340.

    Article  PubMed  Google Scholar 

  8. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319:1244–7.

    Article  CAS  PubMed  Google Scholar 

  9. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  10. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49:347–60.

    Article  CAS  PubMed  Google Scholar 

  11. Xie F, Zhou X, Fang M, Li H, Su P, Tu Y, et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci. 2019;6:1901779.

    Article  CAS  Google Scholar 

  12. Fan Q, Yang L, Zhang X, Peng X, Wei S, Su D, et al. The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Lett. 2018;414:107–15.

    Article  CAS  PubMed  Google Scholar 

  13. Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia and cancer. J Mol Med. 2007;85:1301–7.

    Article  PubMed  Google Scholar 

  14. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148:399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  16. Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008;8:180–92.

    Article  CAS  PubMed  Google Scholar 

  18. Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014;41:518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352:175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2:38–47.

    Article  CAS  PubMed  Google Scholar 

  21. Binenbaum Y, Fridman E, Yaari Z, Milman N, Schroeder A, Ben David G, et al. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res. 2018;78:5287–99.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis. Cancer Res. 2018;78:4586–98.

    Article  CAS  PubMed  Google Scholar 

  23. Yin J, Chen D, Luo K, Lu M, Gu Y, Zeng S, et al. Cip2a/miR-301a feedback loop promotes cell proliferation and invasion of triple-negative breast cancer. J Cancer. 2019;10:5964–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu J, Ruan J, Liu X, Xiao C, Xiong J. MicroRNA-301a-3p suppressed the progression of hepatocellular carcinoma via targeting VGLL4. Pathol Res Pr. 2018;214:2039–45.

    Article  CAS  Google Scholar 

  25. Li X, Li J, Cai Y, Peng S, Wang J, Xiao Z, et al. Hyperglycaemia-induced miR-301a promotes cell proliferation by repressing p21 and Smad4 in prostate cancer. Cancer Lett. 2018;418:211–20.

    Article  CAS  PubMed  Google Scholar 

  26. Xia X, Zhang K, Luo G, Cen G, Cao J, Huang K, et al. Downregulation of miR-301a-3p sensitizes pancreatic cancer cells to gemcitabine treatment via PTEN. Am J Transl Res. 2017;9:1886–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang M, Li C, Yu B, Su L, Li J, Ju J, et al. Overexpressed miR-301a promotes cell proliferation and invasion by targeting RUNX3 in gastric cancer. J Gastroenterol. 2013;48:1023–33.

    Article  CAS  PubMed  Google Scholar 

  28. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–20.

    Article  CAS  PubMed  Google Scholar 

  29. Shao C, Yang F, Miao S, Liu W, Wang C, Shu Y, et al. Role of hypoxia-induced exosomes in tumor biology. Mol Cancer. 2018;17:120.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer. 2019;18:57.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–58.

    Article  CAS  PubMed  Google Scholar 

  32. Wang T, Gilkes DM, Takano N, Xiang L, Luo W, Bishop CJ, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA. 2014;111:E3234–3242.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Li L, Li C, Wang S, Wang Z, Jiang J, Wang W, et al. Exosomes derived from hypoxic oral squamous cell carcinoma cells deliver miR-21 to normoxic cells to elicit a prometastatic phenotype. Cancer Res. 2016;76:1770–80.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu YL, Hung JY, Chang WA, Lin YS, Pan YC, Tsai PH, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene. 2017;36:4929–42.

    Article  CAS  PubMed  Google Scholar 

  35. Yue X, Lan F, Xia T. Hypoxic glioma cell-secreted exosomal miR-301a activates wnt/beta-catenin signaling and promotes radiation resistance by targeting TCEAL7. Mol Ther. 2019;27:1939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. King HW, Michael MZ, Gleadle JM. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xia X, Zhang K, Cen G, Jiang T, Cao J, Huang K, et al. MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget. 2015;6:21046–63.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Chen JQ, Liu JL, Tian L. Issues on peritoneal metastasis of gastric cancer: an update. World J Surg Oncol. 2019;17:215.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thomassen I, van Gestel YR, van Ramshorst B, Luyer MD, Bosscha K, Nienhuijs SW, et al. Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. Int J Cancer. 2014;134:622–8.

    Article  CAS  PubMed  Google Scholar 

  40. Schito L, Semenza GL. Hypoxia-Inducible Factors: Master Regulators of Cancer Progression. Trends Cancer. 2016;2:758–70.

    Article  PubMed  Google Scholar 

  41. Strowitzki MJ, Cummins EP, Taylor CT. Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: unique or ubiquitous. Cells. 2019;8:384.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem. 2004;279:38458–65.

    Article  CAS  PubMed  Google Scholar 

  43. Khan MI, Rath S, Adhami VM, Mukhtar H. Hypoxia driven glycation: mechanisms and therapeutic opportunities. Semin Cancer Biol. 2018;49:75–82.

    Article  CAS  PubMed  Google Scholar 

  44. Ge X, Liu X, Lin F, Li P, Liu K, Geng R, et al. MicroRNA-421 regulated by HIF-1alpha promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget. 2016;7:24466–82.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr Protoc Cell Biol. 2006. Chapter 3, Unit 3 22.

  46. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50:298–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We kindly thank the editor and reviewers for careful review and valuable comments, which have led to a significant improvement of the manuscript. XX wants to thank the care and support from his parents, Xiaokang Xia and Xiaoping Li, thank Huiying Lu for the heartbeat at first glimpse she gave.

Funding

The National Natural Science Foundation of China (grant numbers: 81802313 and 81972206). Shanghai Sailing Program (Grant No. 17YF1415700). The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in the writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fengrong Yu, Enhao Zhao or Gang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, X., Wang, S., Ni, B. et al. Hypoxic gastric cancer-derived exosomes promote progression and metastasis via MiR-301a-3p/PHD3/HIF-1α positive feedback loop. Oncogene 39, 6231–6244 (2020). https://doi.org/10.1038/s41388-020-01425-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01425-6

This article is cited by

Search

Quick links